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Abstract—In this work we propose an interval arithmetic Fast
Fourier Transform (FFT) algorithm for large integer multipli-
cation on both CPU and GPU. We utilize techniques of double-
double precision, shared memory, and thread parallelization to
improve both the efficiency and accuracy of our implementation.
Early results show that for CPU, we can achieve correctness on
factors of billions of digits in size. On GPU, we see performance
speedups compared to existing software libraries, lowering com-
putation cost without adversely impacting accuracy of the result.

Index Terms—Large integer multiplication, interval arithmetic,
FFT

I. INTRODUCTION

The multiplication of large integer strings is an important
kernel in cryptography systems, number theoretic tasks, com-
puter algebra systems, as well as arithmetic software libraries.
The naive method of multiplying two N -digit integers re-
quires O(N2) operations which quickly becomes slow and
infeasible in an actual application. However, there exists a
number of different divide-and-conquer algorithms to reduce
the computational complexity of large integer multiplication,
including the commonly used Karatsuba algorithm and the
Number Theoretic Transform (NTT). Actual implementations
of these algorithms are found in arbitrary-precision software li-
braries such as the GNU Multiple Precision Arithmetic Library
(GMP) [1]. Multi-precision library routines performing exact
multiplication will typically operate over integers in order to
provide provably correct results.

A widely known method for integer multiplication is to use
the faster floating-point FFT [2], but this is not implemented
in many real systems due to round-off errors associated
with floating point arithmetic. One technique to overcome
floating-point errors is interval arithmetic [3] which places
bounds on rounding errors to provide mathematically correct
results. All arithmetic computations then occur on an interval
which contains a real number that has some uncertainty. Final
multiplication is precise if and only if each digit interval of
results bound exact one integer (i.e. floor(upperbound) ==
ceil(lowerbound)).

Contributions. In this paper, we present an interval-
arithmetic FFT-based method for large integer multiplication
which instead bounds the final integer result within an interval.
We show that this technique produces correct results up to
billions of bits.

II. INTEGER MULTIPLICATION VIA INTERVAL
ARITHMETIC FFTS

FFT-based Integer Multiplication. The FFT-based multi-
plication relies on the well known fast convolution via FFT
algorithm. One can express the multiplication of integers as a
linear convolution between the digits, which is discussed more
concretely as follows. Given two integer strings, a and b, bits
are first packed into the elements of two input vectors, x[n],
y[n]. To ensure a linear convolution is performed, each vector
is zero padded such that the second half is all zeros. Then,
we take the FFT of each to get X = FFT (x), Y = FFT (y).
This is followed by an element-wise product, Z = X⊙Y and
an inverse FFT to obtain the product vector, z = FFT−1(Z).
A final carry over step then gives the final product in the proper
form.

Interval-Arithmetic FFT. The shortcomings of floating-
point arithmetic are exacerbated by our choice of Cooley-
Tukey for our FFT algorithm, who’s floating-point error grows
on a logarithmic scale in the worst case [4]. Thus, we adopt
interval arithmetic, which we utilize by bounding all required
constants in the algorithm as well as converting each bit-
packed element of the two input vectors into a corresponding
interval. Since the algorithm requires certain trigonometric
constants, we bound π using machine epsilon constants to
ensure results have at most one bit of error in double precision.
Additionally, we perform all operations in the multiplication
pipeline with its interval complement given by [5].

Algorithm Interval-arithmetic FFT-based Integer Multiplica-
tion

Input: vector x and y of size N
Output: vector z of size 2N

i1← ZeroPad(x)
i2← ZeroPad(y) ▷ zero padding to size of 2N
f1← IntervalFFT(i1)
f2← IntervalFFT(i2)
prod←Mul(f1, f2) ▷ point-wise multiplication
raw retv ← IntervalIFFT(prod)
z ← Carry(raw retv) ▷ Propagate carries



(a) Maximum bitwidth per input vector element
and corresponding bitlength

(b) Gflop/s of algorithm on GPU and CPU (c) Comparison with GMP

Fig. 1: (a) The maximum bitlength using double is 128M while for double-double implementation we can reach billions of
bits. (b) On GPU, performance peaks between 16M and 128M at around 108 Gflop/s. On CPU, performance peaks at 4 Gflop/s
for both double and double-double implementations at 32M and 256M, respectively. (c) The number of bits packed in each
FFT element is written above the bar. The smallest possible FFT that can pack enough bits into each element to represent the
operands was used to generate this plot.

III. RESULTS

Experimental Setup. We tested our algorithm on two plat-
forms: an Intel Xeon E7-4850 v3 with 3 TB of RAM and an
NVIDIA Tesla V100-32GB. A radix-2 iterative Cooley-Tukey
FFT is implemented on both platforms. We avoid expensive bit
reversal operations by implementing a decimation in frequency
(DIF) forward FFT and decimation in time (DIT) inverse FFT.

Max bitwidth and bitlength. Using more bits to represent
a vector element can provide more performance speedup due
to smaller FFT sizes but will lead to a higher likelihood of
losing multiplication precision. A precision error takes the
form of intervals bounding more than one integer before the
“carry” portion of the pipeline. In the CPU implementation,
we used double-double (128 bits floating point data type)
interval arithmetic [3] to alleviate the round-off errors. In the
GPU implementation, we used double interval arithmetic since
double-double is not yet supported.

We obtained the maximum input length that can be sup-
ported by first obtaining the maximum bitwidth for an input
vector element for a given FFT size and then multiplying
the two numbers. The aggregated results are shown in the
Figure 1a. The maximum bitwidth follows an approximately
linear decrease w.r.t. FFT sizes. Using double-double we can
reach billions of bits. However it greatly undermines the
multiplication performance due to more flop involved.

Performance. The performance results on both platforms
are demonstrated in Figure 1b. We calculate the Gflop/s by
counting all the operations included in the multiplication
pipeline and dividing by runtime. For our CPU implementa-
tion, we used OpenMP to help speed up our algorithm through
parallelization. On the GPU, we used shared memory to reduce
expensive global memory access for small-size inputs.

Comparison to GMP. Using the optimal bitwidth that can
be packed in an element, we tested our GPU implementation
against GMP. GMP is used to compare computation time and
check for correctness as well. For GMP we used mpz_init,

mpz_urandomm, mpz_mul to initialize and multiply random
inputs of given sizes. Speedup is shown in Figure 1c. The
labels above the bars represent the optimal bitwidth without
precision error. We see a gradually increasing speedup when
bitwidth is fixed but when it comes to an edge point where
current bitwidth cannot be supported due to the round-off
errors the speedup drops a bit and then increases again with
increasing FFT size if bitwidth keeps identical. We see a
comparable performance to the GMP libraries and higher than
2x speedup in the case where input size is 4M.

IV. CONCLUSION AND FUTURE WORK

The proposed multiplication pipeline utilizes both FFT
convolution to reduce computational complexity as well as
interval arithmetic for greater numerical precision. We believe
the demonstrated speedups and precision improvements are
a strong indicator that going beyond proof-of-concept could
have significant results. Specifically, there is notable room for
optimization, such as taking advantage of real-FFT symme-
tries, using pruned FFTs, and combining our algorithm with
Karatsuba to achieve optimal performance.
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