
Linear Algebraic Formulation of Edge-centric
K-truss Algorithms with Adjacency Matrices

Tze Meng Low, Daniele G. Spampinato, Anurag Kutuluru, Upasana Sridhar,
Doru Thom Popovici, Franz Franchetti

Electrical and Computer Engineering Department
Carnegie Mellon University

Pittsburgh, PA, USA
{lowt, spampinato}@cmu.edu, {akutulur,upasanas}@andrew.cmu.edu,

{dpopovic, franzf}@cmu.edu

Scott McMillan
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

smcmillan@sei.cmu.edu

Abstract—Edge-centric algorithms using the linear algebraic
approach typically require the use of both the incidence and
adjacency matrices. Due to the two different data formats,
the information contained in the graph is replicated, thereby
incurring both time and space for the replication. Using K-truss
as an example, we demonstrate that an edge-centric K-truss
algorithm, the Eager K-truss algorithm, can be identified from a
linear algebraic formulation using only the adjacency matrix. In
addition, we demonstrate that our implementation of the linear
algebraic edge-centric K-truss algorithm out-performs a Galois’
K-truss implementation by an average (over 53 graphs) of more
than 13 times, and up to 71 times.

Index Terms—Graph Algorithms, Edge-centric Algorithms, K-
truss, Linear Algebra, High Performance

I. INTRODUCTION

The linear algebraic approach to graph algorithms is com-
monly associated with vertex-centric graph algorithms and
“Think-like-a-vertex” graph frameworks [1], [2]. Under the
vertex-centric paradigm, algorithms are described in terms of
operations on vertices, while edges are viewed as conduits for
passing input and output values between vertices. As such,
it is conventional wisdom that edge-centric operations such
as K-truss [3], an important graph operation for identifying
cohesive groups, either 1) are inefficient when formulated as
linear algebra operations [4], or 2) require the use of the
incidence matrix which has to be instantiated prior to the start
of the algorithm [5].

We make the observation that all graph formats contain the
same information. This means that the information required
for computing the K-truss of a graph must already be present
in the adjacency matrix. This implies that identifying edge-
centric K-truss algorithms can be distilled down to finding out
how edges are stored in the adjacency matrix, and iterating
over the storage format in an appropriate manner to compute
the support value of all edges.

This material is based upon work funded and supported by the Department
of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally
funded research and development center [DM18-0852]. The view, opinions,
and/or findings contained in this material are those of the author(s) and should
not be construed as an official Government position, policy, or decision, unless
designated by other documentation.

In this paper, we introduce the Eager K-truss algorithm, a
linear algebraic formulation of an edge-centric K-truss algo-
rithm without the use of the incidence matrix. We demonstrate
that, over 16 cores, the parallel Eager K-truss algorithm attains
performance that, on average, is more than four orders of
magnitute faster than the sequential reference implementation
provided by the Graph Challenge [5], and, on average, more
than 13 times faster than the 2017 Graph Challenge Champi-
ons’ implementation [4].

II. LINEAR ALGEBRAIC K-TRUSS

The K-trusses of a simple undirected graph G are subgraphs
Gk, where every edge in Gk is a part of k− 2 triangles in Gk.
The number of triangles plus two is defined as the support of
an edge. A common approach for computing the K-trusses of
G is to use a two-step process where 1) the support of every
edge is computed, and 2) edges with insufficient support are
removed. This two steps are repeated until either no edges are
removed, or all edges have been removed.

A. Computing edges support in an undirected simple graph

Consider an undirected edge e = (u, v) that connects
vertices u and v. Since u and v are the two end-points of
e, the number of triangles containing e must be the number
of common vertices in the neighborhoods of u and v, i.e.,

sup(e) = |N(u) ∪N(v)|, (1)

where sup(e) is the support of e and N(x) is the neighbor-
hood, or the set of vertices connected to x. A linear algebraic
formulation of Equation 1 is

sup(e) = (A0u)
T (A0v)

= uTAT
0 A0v,

where u and v are basis vectors, i.e., vectors of zeros with
a single one in the uth or vth position, respectively; and A0

is the adjacency matrix of the graph G. Notice that pre and
post multiplying AT

0 A0 with basis vectors u and v simply
picks out the element in the uth row and vth column of the
matrix AT

0 A0. To compute the support of all edges in the
graph represented by the adjacency matrix A0, one simply

reads off the elements in the appropriate location of AT
0 A0.

In other words, the support of all edges is given by the linear
algebraic equation:

S = AT
0 A0 ◦A0, (2)

where ◦ is the Hadamard product (i.e., element-wise multipli-
cation). Notice that in the this case, the adjacency matrix A0

is used as a mask so that only support values corresponding
to actual edges in the graph are computed by Equation 2.

B. Eliminating edges with insufficient support

The next step in computing the K-trusses of G is to remove
edges with insufficient support such that only edges with
support greater or equal to k − 2 are left. This can be
implemented by first identifying a mask M that only keeps
edges with support greater or equal to k−2, and then applying
that mask on A0. These two operations can be represented with
following two linear algebraic formulas:

M = S ≥ (k − 2) (3)
A1 = A0 ◦M. (4)

Using the newly computed subgraph represented by A1, we
repeat the process of computing support, and eliminating edges
by repeated computation of Equations 2-4. When no more
edges can be removed,

Gk = S,

where Gk is the adjacency matrix of of the K-truss Gk of G.

C. Introducing Symmetry

As we are only considering undirected edges, this means
that A0 is a symmetric matrix. As such, only the upper (or
lower) triangular part of A0 needs to be stored. Similarly, the
output S is also symmetric and should be stored in the same
way. Mathematically, we can capture the symmetry of A0 and
S by partitioning both A0 and S into submatrices as follows:

S →
(
STL STR

∗ SBR

)
and A0 →

(
A0TL

A0TR

∗ A0BR

)
,

where STL, SBR, A
0TL, and A

0BR are symmetric submatri-
ces, STR and A0TR

are general submatrices, and ∗ represents
submatrices of values in S and A that are not stored.

Substituting these quadrants into Equation 2, we obtain the
following expressions that describe how values in different
quadrants of the S can be computed using submatrices of A0,

STL ≡ (AT
0TL

A0TL
+A0TR

AT
0TR

) ◦A0TL
(5)

STR ≡ (AT
0TL

A0TR
+A0TR

A0BR
) ◦A0TR

(6)

SBR ≡ (AT
0TR

A0TR
+AT

0BR
A0BR

) ◦A0BR
. (7)

III. EDGE-CENTRIC EAGER K-TRUSS ALGORITHM

The quintessential edge-centric K-truss algorithm iterates
over the edges, computes the support of each edge, and
determines if that edge should be eliminated. While it is
possible to compute the edges in any order, it is always prudent
to compute the edges in the order they are stored so as to
improve memory accesses.

Without loss of generality, let us assume that the adjacency
matrix is stored in compressed sparse row format (CSR), and
only the upper triangular matrix is stored. The use of CSR
implies that the support values of the edges are stored in a
row-wise manner. Iterating over the edges, from the first row
down, and in a left-to-right manner, one would compute the
edges in a sequential manner.

For the remaining of the paper, we will use upper-case,
lower-case and greek letters to represent matrices, column
vectors, and scalar elements, respectively.

A. Eager Computation

We make the observation that computing the support values
in a row-wise manner from top to bottom would mean that
the partitions STL and STR of S have been computed.
This in turn requires access to values in A0TL

, A0TR
, and

A0BR
. Furthermore, these partitions of A0 are also used to

update SBR (as shown in Equation 7). Therefore, we want
to use A0TR

to compute as much of SBR as possible to
reduce redundant memory accesses. As such, we are eagerly
performing as much computation as possible; and hence the
name of our proposed Eagar K-truss algorithm.

B. Deriving the updates

Let us assume that at the start of any given iteration, the
values in STL and STR have been computed. In addition, SBR

has been partially updated such that

SBR ≡ AT
0TR

A0TR
◦A0BR

. (8)

To make progress towards computing S, we first identify
the next row of S to be updated from SBR by splitting SBR

into quadrants and isolating the diagonal element σ11 and the
row vector sT12, i.e.,

(
STL STR

∗ SBR

)
→

 S00

(
s01 S02

)(
∗
∗

) (
σ11 sT12
∗ S22

)  .

By partitionining A0 in a similar fashion as S, i.e.,

(
A0TL

A0TR

∗ A0BR

)
→

 A000

(
a001 A002

)(
∗
∗

) (
α011 aT012
∗ A022

)  ,

and subsituting the appropriate submatrices and subvectors of
A0 into Equation 8, we obtain the following expressions for
the values of σ11, sT12, and S22:

SBR ≡ AT
0TR

A0TR
◦A0BR(

σ11 sT12
∗ S22

)
≡

(
a001 A002

)T (
a001 A002

)
◦
(

0 aT012
∗ A022

)
≡

(
0 aT001A002 ◦ aT012
∗ AT

002A002 ◦A022

)
. (9)

At the end of the iteration, we know that we will have
computed both σ11 and sT12, and can move them above the
thick lines such that we maintain our initial assumptions about
the values in the different submatrices of S. This means that
at the end of the iteration, the different partitions of S are in
the following states:

(
S00 sT01
∗ σ11

) (
S02

sT12

)
(
∗ ∗

)
S22


Again, partitioning A0 conformally into

(
A000 aT001
∗ 0

) (
A002

aT012

)
(
∗ ∗

)
A022


and substituting the appropriate partitions of A0 into Equa-
tions 6 and 7, we obtain the following expressions for STR

and SBR at the end of an iteration:

STR ≡ (AT
0TL

A0TR +A0TRA0BR) ◦A0TR(
S02

sT12

)
≡
((

A000 a001
∗ 0

)T (A002

aT012

)
+(

A002

aT012

)
A022

)
◦
(

A002

aT012

)
≡
(

(AT
000

A002 + a001a
T
012

+A002A022) ◦A002

(aT001A002 + aT012A022) ◦ aT012

)
(10)

SBR ≡ AT
0TR

A0TR ◦A0BR

S22 ≡
((

A002

aT012

)T (A002

aT012

))
◦A022

≡
(
AT

002
A002 + a012a

T
012

)
◦A022 . (11)

Using Equations 9, 10 and 11, we can identify the differ-
ences between the expressions for sT12 and S22 at the start and
end of the iteration. This tells us that updates in the body of
the loop have to be

sT12 = sT12 + aT012A022 ◦ aT012
S22 = S22 + a012a

T
012 ◦A022 .

IV. IMPLEMENTATION

Our C implementation of the Eager K-truss algorithm is a
direct translation of the algorithm described in the previous
section, and is shown in Figure 1.

A. Optimizations

We highlight a number of optimizations that were performed
in our implementation.

1) Operation Fusion. The updates to S22 and sT12 both
require the use of the subvector aT012 , and the submatrix
A022 . As such, we fuse the loops that compute the two
updates to reduce redundant data movement.

2) Size of support array. Due to the partial update nature
of the algorithm, an array is required to store the inter-
mediate support values. As the maximum support is one
less than the maximum degree of the vertices, the size
of an element of the array is set to the smallest possible
datatype. This increases data per byte of memory moved.
For all experiments, uint16_t suffices.

3) Packing the intermediate adjacency matrices Ai. In each
iteration of the K-truss algorithm, edges are filtered out
from Ai to obtain a subgraph Ai+1. To avoid iterating
over the edges that no longer contribute to the K-truss
computation, we pack Ai to eliminate the removed
edges. Packing is performed within each row, where
only values in the column index array (JA) are packed.
This leaves gaps between the end of one row and the
start of another. The same memory location allocated for
the initial adjacency matrix is reused so no additional
memory is required for the packing.

B. Parallelism

Parallelism is introduced in our implementation using the
OpenMP [6] parallel for construct. As there is a depen-
dency between iterations of the loop that computes S, i.e.,
the support values, the atomic clause is used to ensure that
all updates are performed correctly. Dynamic scheduling was
used to reduce the effects of variation in the amount of work
in each iteration of the loop that computes S. In addition, to
avoid excessive cache conflicts, chunk sizes of 128 and 1024
were utilized.

V. RESULTS

In this section, we compare the performance of our Eager
K-truss algorithm implemented in C (compiled with gcc
4.8.5) against the serial Julia implementation1 provided on
the Graph Challenge website [7] run using Julia 0.6 [8],
and the multi-threaded K-truss implementation in Galois [9],
[10]. Datasets from the Stanford Network Analysis Project
(SNAP) [11], and Measurement and Analysis on the WIDE
Internet (MAWI) [12] were downloaded from the Graph
Challenge website in tab-separated value (TSV) format.

A. Experimental Setup

We performed our experiments on a dual-socket machine
with 256 GB DDR4 memory. Each CPU is an Intel i7 E5-
2667 v3 (Haswell) with a frequency of 3.2GHz, 20 MB LLC
cache, and eight physical cores. Based on the implementation,
we performed the following preprocessing of the input dataset:

1The implementation was edited to avoid using deprecated features, and
higher performance was attained.

1 void e a g e r k t r u s s (u i n t 3 2 t *IA , u i n t 3 2 t *JA , / / i n p u t m a t r i x i n CSR f o r m a t
2 u i n t 1 6 t *M, / / a r r a y o f s u p p o r t v a l u e s
3 u i n t 3 2 t NUM VERTICES, u i n t 3 2 t K) {
4
5 boo l n o t E q u a l = t r u e ;
6
7 whi le (n o t E q u a l){ / / r e p e a t u n t i l no edges are removed
8
9 n o t E q u a l = f a l s e ;

10
11 # pragma omp p a r a l l e l f o r num threads (NUM THREADS) s c h e d u l e (dynamic , CHUNK)
12 f o r (u i n t 3 2 t i = 0 ; i < NUM VERTICES ; ++ i) { / / i t e r a t e over e v e r y row
13
14 u i n t 3 2 t a 1 2 s t a r t = * (IA + i) ;
15 u i n t 3 2 t a12 end = *(IA + i + 1) ;
16 r e g i s t e r u i n t 3 2 t *JAL = JA + a 1 2 s t a r t ;
17
18 f o r (u i n t 3 2 t l = a 1 2 s t a r t ; *JAL != 0 && l != a12 end ; ++ l) { / / and non−z e r o columns
19
20 u i n t 3 2 t A 2 2 s t a r t = * (IA + *(JAL)) ;
21 u i n t 3 2 t A22 end = *(IA + *(JAL) + 1) ;
22
23 JAL++ ;
24
25 u i n t 1 6 t ML = 0 ;
26 u i n t 3 2 t *JAK = JAL ;
27 u i n t 3 2 t * JAJ = JA + A 2 2 s t a r t ;
28 u i n t 1 6 t *MJ = M + A 2 2 s t a r t ;
29 u i n t 1 6 t *MK = M + l + 1 ;
30
31 whi le (*JAK!=0 && *JAJ != 0 && / / check e a r l y t e r m i n a t i o n
32 JAK != JA + a12 end && JAJ != JA + A22 end){
33
34 r e g i s t e r u i n t 3 2 t J A j v a l = * JAJ ;
35 r e g i s t e r i n t u p d a t e v a l =(J A j v a l == *JAK) ;
36
37 i f (u p d a t e v a l) {
38 # pragma omp a to mi c
39 ++(*MK) ;
40 }
41
42 ML += u p d a t e v a l ;
43
44 u i n t 3 2 t tmp = *JAK ;
45 u i n t 3 2 t advanceK = (tmp <= J A j v a l) ;
46 u i n t 3 2 t a d v a n c e J = (J A j v a l <= tmp) ;
47 JAK += advanceK ;
48 MK += advanceK ;
49 JAJ += a d v a n c e J ;
50
51 i f (u p d a t e v a l) {
52 # pragma omp a to mi c
53 ++(*MJ) ;
54 }
55 MJ += a d v a n c e J ;
56 }
57 # pragma omp a to mic
58 *(M+ l)+=ML;
59 }
60 }
61
62 # pragma omp p a r a l l e l f o r num threads (NUM THREADS) s c h e d u l e (dynamic , CHUNK)
63 f o r (u i n t 3 2 t n = 0 ; n < NUM VERTICES ; ++n) {
64
65 u i n t 3 2 t s t = * (IA + n) ;
66 u i n t 3 2 t end = *(IA + n + 1) ;
67 u i n t 3 2 t * J = JA + s t ;
68 u i n t 3 2 t * Jk = JA + s t ;
69 u i n t 1 6 t *Mst = M + s t ;
70
71 f o r (; * J != 0 && J != JA + end ; ++Mst ,++ J) {
72 i f (*Mst >= K − 2) { / / check i f edge needs t o be f i l t e r e d
73 * Jk = * J ; / / keep i t i n packed f o r m a t
74 Jk ++;
75 }
76 *Mst = 0 ; / / r e s e t s u p p o r t v a l u e f o r n e x t i t e r a t i o n
77 }
78 i f (Jk < J) { / / some edges i n t h i s row has been d e l e t e d
79 n o t E q u a l = 1 ; / / no l o c k i n g needed s i n c e a lways s e t t o 1
80 * Jk = 0 ;
81 }
82 }
83
84 }
85
86 }

Fig. 1. Parallel implementation of the Eager K-truss algorithm

• Julia. No preprocessing was perform. All experiments
were ran using the original TSV input files.

• Galois. Data was converted from the TSV files into
Galois’ proprietary binary format using the graph con-
verter provided with Galois with the smallest (i.e., 32-bit
integer) edge type option provided.

• Eager K-truss. The adjacency matrix in the TSV file
was first converted into an upper triangular matrix and
then stored into a compressed-sparse-row (CSR) binary
format.

B. Correctness

We verified that our implementation reported a non-empty
graph for maximum K-truss values (i.e., kmax) reported in
existing literature [13], [14]. In addition, we also checked for
the the absence of (kmax +1)-trusses. Finally, where possible,
we checked that our implementation returns the same K-truss
returned by the Galois implementation.

C. Performance Results

In Table I, we report execution time for all three K-
truss implementations with k = kmax. Execution times were
measured after data has been loaded into memory. For Julia,
we report timing in seconds (s), while execution times for
Galois and our Eager K-truss implementation in milliseconds
(ms). Time fields marked with a dash (-) indicate Julia and
Galois executions that ran for more than an hour. Parallel
implementations are run using 16 threads. As a number of
options were available for the Galois implementation, we ran
the default bulk synchronous algorithm, and also the bulk
synchoronus Jacobi algorithm under a variety of do all flags
and reported the fastest timing obtained. In addition, we also
report performance speedup attained by our implementation
over both Julia and Galois.

On average, our sequential Eager K-truss outperforms the
Julia baseline by three orders of magnitude on average. With
16 threads, the parallel Eager K-truss outperforms the Julia
baseline by an average factor of 22,500 and peaks at more
than 194,000 times faster.

With the exception of two out of 54 datasets, our parallel
Eager K-truss implementation is consistently faster than the
parallel Galois implementation by an average of 17 times.
While the maximum speedup of 71.26 times was obtained
on a relatively small graph, our parallel eager algorithm out-
performs Galois by a factor between 1.79 and 5.94 times on
large graphs (defined as graph with more than a million edges).

In Figure 2, we showed Millions of Edges Traversed per
sec (METPS) for the different implementations of K-truss.
On all graphs, the parallel Eager K-truss implementation with
16 threads has a METPS that is approximately an order of
magnitute higher than the sequential implementation. For most
graphs, the Eager K-truss attains a higher METPS than the
Galois implementation. It is interesting to note that the overall
trend in performance across multiple graphs is similar for
the sequential and parallel Eager K-truss, and to a lesser
extent the sequential Julia implementation. This suggests that

Fig. 2. Comparison of millions of edges traversed / sec (METPS) for different
implementations.

the structure of the graphs affects the performance of the
implementations significantly.

VI. CONCLUSION & FUTURE DIRECTIONS

In this paper, we introduced the edge-centric Eager K-
truss algorithm that was derived and formulated with linear
algebra operations on the adjacency matrix. We demonstrated
that the performance attained by an algorithm derived using
a linear algebraic approach can be significantly higher than
the performance based on other approaches. Specifically, we
demonstrate that our parallel Eager K-truss implementation
outperformed the Galois’ K-truss implementation by up to 71
times.

Even better performance could be achieved by improving
our memory consumption and introducing more appropriate
NUMA-aware memory allocation schemes to prevent exces-
sive cache coherency side effects and improve scalability.

In particular, while we have highlighted a number of edge-
centric K-truss algorithms when the adjacency matrix is stored
in the CSR format, we believe that a similar approach for
other adjacency matrix storage format can yield different sets
of edge-centric algorithms. This could include algorithmic
variants more suitable for reducing thread divergence and
minimizing communication, allowing for an extension of our
approach to distributed-memory and highly parallel GPU- and
FPGA-accelerated systems.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[2] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Computing Surveys (CSUR), vol. 48, no. 2, p. 25,
2015.

[3] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”
2008.

[4] C. Voegele, Y. S. Lu, S. Pai, and K. Pingali, “Parallel triangle counting
and k-truss identification using graph-centric methods,” in 2017 IEEE
High Performance Extreme Computing Conference (HPEC), Sept 2017,
pp. 1–7.

TABLE I
PERFORMANCE COMPARISON OF PARALLEL EAGER K-TRUSS ALGORITHM ON 2-SOCKET 16-CORE INTEL HASWELL AGAINST A SEQUENTIAL JULIA AND

PARALLEL GALOIS IMPLEMENTATIONS. DATASET IS SORTED BY INCREASING NUMBER OF EDGES IN THE GRAPH.

Graph Edges kmax Sequential Julia Galois Eager Speed-up
(in thousands) Time (s) Time (ms) Time (ms) Time (ms) over Julia over Galois

16 threads Sequential 16 threads Seq. vs seq. Par. vs seq. Par. vs par.
as-caida20071105 12.6 16 157.2 19.97 43.24 3.45 3,636 45,639 5.80
ca-GrQc 14.5 44 4.8 20.27 1.90 0.74 2,530 6,522 27.58
p2p-Gnutella08 20.8 5 1.1 19.82 2.83 0.59 399 1,906 33.48
oregon1 010407 22.0 14 16.7 19.96 11.03 1.46 1,518 11,508 13.72
oregon1 010331 22.0 16 24.8 20.22 11.20 1.53 2,216 16,201 13.20
oregon1 010414 22.5 15 25.6 20.13 11.69 1.49 2,190 17,227 13.55
oregon1 010428 22.5 15 26.0 19.80 11.92 1.55 2,178 16,705 12.74
oregon1 010505 22.6 14 26.4 19.82 12.22 1.65 2,161 16,029 12.03
oregon1 010512 22.7 15 26.6 19.96 11.87 1.55 2,242 17,143 12.86
oregon1 010519 22.7 15 27.0 20.18 12.17 1.62 2,216 16,603 12.43
oregon1 010421 22.7 15 34.6 19.94 12.05 1.73 2,869 19,969 11.52
oregon1 010526 23.4 14 27.7 20.18 12.84 1.84 2,154 15,012 10.96
ca-HepTh 26.0 32 3.4 33.06 2.46 0.46 1,369 7,256 71.26
p2p-Gnutella09 26.0 5 1.3 19.91 3.06 0.47 419 2,732 42.45
oregon2 010407 30.9 24 27.4 20.01 18.36 1.93 1,494 14,234 10.39
oregon2 010505 30.9 21 28.5 20.13 19.27 2.10 1,479 13,571 9.58
oregon2 010331 31.2 25 27.1 20.51 19.32 2.20 1,405 12,351 9.34
oregon2 010512 31.3 21 29.4 21.28 20.02 2.26 1,469 13,002 9.41
oregon2 010428 31.4 21 17.6 20.32 21.01 2.31 839 7,631 8.80
p2p-Gnutella06 31.5 4 2.2 19.84 3.22 0.48 674 4,517 41.33
oregon2 010421 31.5 22 28.2 20.34 20.97 2.30 1,345 12,241 8.83
oregon2 010414 31.8 24 25.0 22.79 25.40 2.37 984 10,562 9.63
p2p-Gnutella05 31.8 4 1.8 19.95 3.45 0.49 533 3,786 41.14
oregon2 010519 32.3 24 30.3 20.34 19.70 2.13 1,537 14,227 9.56
oregon2 010526 32.7 25 31.5 19.96 20.80 2.17 1,515 14,542 9.22
p2p-Gnutella04 40.0 4 3.7 20.19 3.85 0.45 973 8,352 45.07
as20000102 53.4 10 6.8 19.74 8.71 3.34 783 2,046 5.92
p2p-Gnutella25 54.7 4 3.4 19.70 4.27 0.56 794 6,002 34.92
p2p-Gnutella24 65.4 4 5.7 19.66 5.38 0.61 1,065 9,452 32.43
facebook 88.2 97 5.7 25.64 168.78 29.88 34 192 0.86
p2p-Gnutella30 88.3 4 5.9 19.88 7.31 0.73 813 8,151 27.27
ca-CondMat 93.4 26 17.4 20.18 14.51 1.09 1,198 15,957 18.53
ca-HepPh 118.5 239 15.9 26.54 166.19 9.84 95 1,612 2.70
p2p-Gnutella31 147.9 4 12.3 19.81 12.98 0.89 948 13,814 22.23
email-Enron 183.8 22 120.2 36.60 229.12 8.28 524 14,518 4.42
ca-AstroPh 198.1 57 58.3 13.44 90.46 4.36 644 13,378 3.08
loc-brightkite edges 214.1 43 129.3 24.03 118.61 6.59 1,090 19,622 3.65
cit-HepTh 352.3 30 94.1 35.84 324.12 11.73 290 8,025 3.05
email-EuAll 364.5 20 1,551.0 51.03 294.11 7.98 5,274 194,390 6.40
soc-Epinions1 405.7 33 479.3 53.64 702.46 23.98 682 19,987 2.24
cit-HepPh 420.9 25 93.8 36.01 253.12 7.85 371 11,956 4.59
soc-Slashdot0811 469.2 35 684.7 45.58 539.35 16.25 1,269 42,129 2.80
soc-Slashdot0902 504.2 36 495.8 49.08 566.18 16.54 876 29,970 2.97
amazon0302 899.8 7 140.9 29.46 83.10 4.95 1,696 28,494 5.96
loc-gowalla edges 950.3 29 - 86.14 1732.51 120.52 - - 0.71
roadNet-PA 1,541.9 4 - 27.53 101.38 4.74 - - 5.81
roadNet-TX 1,921.7 4 - 32.65 159.47 5.49 - - 5.94
amazon0312 2,349.9 11 - 76.92 465.10 20.31 - - 3.79
amazon0505 2,439.4 11 - 76.88 470.23 20.90 - - 3.68
amazon0601 2,443.4 11 - 79.36 498.07 21.02 - - 3.77
roadNet-CA 2,766.6 4 - 37.27 165.23 7.92 - - 4.71
cit-Patents 16,518.9 36 - 572.58 3843.52 194.28 - - 2.95
MAWI-1 19,020.2 3 - - - 5,484 - - -
MAWI-2 37,242.7 3 - - - 8,216 - - -
MAWI-3 71,707.5 3 - - - 8,286 - - -
MAWI-4 135,117.4 Data was corrupted. Unable to convert to CSR
MAWI-5 0.24M 3 - - - 24,756 - - -
Friendster 1.80M 129 - 298,333 - 166,450 - - 1.79

[5] S. Samsi, V. Gadepally, M. B. Hurley, M. Jones, E. K. Kao,
S. Mohindra, P. Monticciolo, A. Reuther, S. Smith, W. S. Song,
D. Staheli, and J. Kepner, “Static graph challenge: Subgraph
isomorphism,” CoRR, vol. abs/1708.06866, 2017. [Online]. Available:
http://arxiv.org/abs/1708.06866

[6] OpenMP Architecture Review Board, “OpenMP application program
interface,” November 2015. [Online]. Available: \url{http://www.
openmp.org/#}

[7] “Graph Challenge,” http://graphchallenge.mit.edu/, 2017.
[8] “The Julia programming language,” 2018. [Online]. Available:
\url{julialang.org/downloads/}

[9] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,” in
Programming Language Design and Implementation (PLDI), 2011, pp.
12–25.

[10] “Galois: C++ library for multi-core and multi-node parallelization,”
github.com/IntelligentSoftwareSystems/Galois/, 2018.

[11] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, June 2014.

[12] M. W. Group, “Measurement and analysis on the wide internet,” http:
//mawi.wide.ad.jp/mawi/, June 2014.

[13] H. Kabir and K. Madduri, “Shared-memory graph truss decomposition,”
CoRR, vol. abs/1707.02000, 2017. [Online]. Available: http://arxiv.org/
abs/1707.02000

[14] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
Proceedings of the VLDB Endowment, vol. 5, no. 9, pp. 812–823, 2012.

