
PageRank Acceleration for Large Graphs with
Scalable Hardware and Two-Step SpMV

Fazle Sadi, Joe Sweeney, Scott McMillan, Tze Meng Low, James C. Hoe, Larry Pileggi and Franz Franchetti
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
Email: {fsadi, joesweeney}@cmu.edu, smcmillan@sei.cmu.edu, {lowt, jhoe, pileggi, franzf}@cmu.edu

Abstract—PageRank is an important vertex ranking algorithm
that suffers from poor performance and efficiency due to notori-
ous memory access behavior. Furthermore, when graphs become
bigger and sparser, PageRank applications are inhibited as most
current solutions profoundly rely on large random access fast
memory, which is not easily scalable. In this paper we present
a 16nm ASIC based shared memory platform for PageRank
implementation that fundamentally accelerates Sparse Matrix
dense Vector multiplication (SpMV), the core kernel of PageRank.
This accelerator is scalable, guarantees full DRAM streaming
and reduces off-chip communication. More importantly, it is
capable of handling very large graphs (∼2 billion vertices)
despite using significantly less fast random access memory than
current solutions. Experimental results show that our proposed
accelerator is able to yield order of magnitude improvement in
both energy efficiency and performance over state of the art
shared memory commercial off-the-shelf (COTS) solutions.

I. INTRODUCTION

PageRank is an iterative algorithm that ranks the vertices
of a graph according to their relative importances, which is the
probability of reaching any given vertex. The PageRank vector
holds numerical values that represent these importances for a
set of vertices within a graph. For example, in the case of the
most well known application of PageRank, it is used to rank
web pages for a particular key word search. Here, each vertex
of the graph represents a web page and the edges represent
hyperlinks among the web pages. The higher the value of a
vertex in the PageRank vector, the higher is the likelihood that
anyone randomly browsing through the World Wide Web will
land on that particular web page.

Mathematical representation of widely used Power Method
[1] of an iteration of PageRank algorithm on static graph is
given in Equation 1.

xT
(i+1) = αx

T
i A︸︷︷︸

SpMV

+ (1 − α)xTi
eeT

N︸ ︷︷ ︸
constant addition

(1)

Here, xT
(i+1) is the output PageRank vector at iteration i, A

is the hyperlink sparse matrix of dimension (N × N), α is a
constant damping factor. The term eeT /N is the teleportation
matrix that models the random probability of a user to jump to
any page with uniform distribution. The column vector e has
constant 1 for each element.

In Equation 1, the second term essentially contributes only
a constant addition in the update process of each element in the
resultant PageRank vector. On the other hand, the first term is
a Sparse Matrix dense Vector multiplication (SpMV) operation.
As this is the core kernel for each iteration, all challenges
related to SpMV kernel are inherited by PageRank.

Challenges. SpMV is a bandwidth bound operation with
adverse memory access behavior. It requires random access to
either the input vector (xi) or the resultant vector (xi+1). For
numerous real world graphs, these vectors are much larger than
fast memories that are affordable by current technologies, such
as Static Random Access Memory (SRAM) and Embedded
DRAM (eDRAM). Hence, the majority of the memory accesses
of PageRank occur in random fashion to the main memory; i.e.
DRAM. This translates to poor utilization of already scarce
DRAM bandwidth. Furthermore, it causes redundant off-chip
transfers due to granular access that is smaller than cache line,
making this bandwidth bound kernel even more inefficient.

A major implication of these issues is that most state of
the art PageRank solutions strongly depend on fast storages to
achieve decent performance and efficiency. This dependency
inhibits these solutions to scale effectively as the graphs get
larger and sparser. It is mainly because - a) fast storages are not
easily scalable in a shared memory scenario, and b) distributed
systems have huge communication overhead [2]. Custom
hardware solutions in the literature have reported to handle only
a few million nodes, despite their significant advantage in design
flexibility. For example, the FPGA accelerator in [3] reported
maximum 2.3M nodes using 8.4MB SRAM and the Application
Specific Integrated Circuit (ASIC) based architecture in [4]
reported maximum 8M nodes in spite of using a huge 32MB
eDRAM scratchpad. On the other hand, with large last level
caches (LLCs) commercial off-the-shelf (COTS) solutions, such
as [5], [6], tend to handle larger graphs, but with low efficiency
and poor bandwidth utilization. Nonetheless, the graphs reported
only have tens of millions nodes at maximum. Moreover, costly
data pre-processing to extract locality in the data is prevalent
in both custom and COTS architectures [6]–[11].

Goals and Contributions. For high performance and
efficient PageRank application on very large (∼billion nodes)
and highly sparse (avg. degree <10) graphs, a number of goals
are needed to be achieved: - a) streaming DRAM access, b) off-
chip traffic reduction, c) full utilization of DRAM bandwidth, d)
low requirement of fast memory to scale, and e) no dependence
on data locality and costly pre-processing. Contributions of this
work in achieving these goals are as follows.

1. We have designed a 16nm ASIC (currently under
fabrication) based shared memory accelerator for PageRank
that guarantees 100% streaming access to main memory.

2. Our proposed architecture incorporates state of the art
High Bandwidth Memory (HBM) [12]. We have developed an
optimization technique to reduce off-chip traffic of PageRank
and fully utilize the extreme bandwidth delivered by 3D DRAM.

3. This PageRank implementation is able to operate on

Carnegie Mellon

xA (NxN)
Intermediate

sparse vectors

Step 1 Step 2x

A0 An-1

x0

xn-1

Segment width depends on fast memory

y

v0 vn-1

Fig. 1: Two-Step SpMV proposed in [13].

very large graphs (∼2 billion nodes) while using significantly
less fast memory (11MB). With significant room for possible
expansion of fast memory, the proposed solution is scalable to
handle even larger graphs. This ASIC design is also portable
to FPGA due to reasonable hardware resource requirements.

4. Our proposed solution is independent of data (nonzero)
locality and only requires basic matrix partitioning.

The remainder of the paper is organized as follows. Sec. II
details the SpMV algorithm and basic PageRank implementa-
tion using SpMV. In Sec. III, we demonstrate an optimization
technique to reduce off-chip communication and increase
computation’s streaming speed. Sec. IV describes the ASIC
developed for PageRank acceleration. In Sec. V, we evaluate
the performance and efficiency of our proposed methods against
recent benchmarks. Lastly, Sec. VI concludes this work.

II. TWO-STEP SPMV DRIVEN PAGERANK

SpMV Algorithm. In this work, we have implemented a
SpMV algorithm, namely Two-Step that is presented in [13].
The main reason for using this algorithm for PageRank is that it
guarantees full DRAM streaming. Furthermore, for large graphs
with high sparsity, Two-Step produces less off-chip traffic than
most conventional SpMV algorithms. This algorithm is depicted
in Figure 1. Before computation, the matrix A is partitioned
into 1D column blocks and the source vector (x) is partitioned
into smaller segments. The segment width of x is dictated
by the available fast random access memory. The width of
the column blocks of A is same as the source vector segment
width. The column blocks of the sparse matrix A is stored in
a row-major sparse format [14].

As the name suggests, the operation is conducted in two
separate steps. In the first step, a single segment of x is streamed
from DRAM and stored in the fast memory. Afterwards, a single
column block of A is streamed to the computation core from
DRAM and partial SpMV is conducted between that column
block and vector segment. All the required random access to
x is confined in the address space present in the fast memory,
which has small and fixed latency. Hence, this operation can be
easily pipelined and implemented in a fully streaming fashion.
A sparse intermediate vector (vk) is generated as a result of
this operation, which is streamed back to main memory. As
the matrix block is stored and accessed in row-major direction,
elements of vk is naturally sorted according to their position
indices. This partial SpMV is conducted sequentially for all
the matrix blocks and, after the first step, we end up with n
intermediate sparse vectors residing in the main memory.

In the second step, the intermediate sparse vectors are
streamed back from DRAM and merged to form the dense
resultant vector y. To ensure full main memory streaming, page
(row buffer in DRAM) size blocks are prefetched whenever an
element of vk is transferred from DRAM. Step 2 is essentially
a large n-way merge operation on very long and sorted lists. It
is difficult to implement such a large Multi-way Merge kernel
in COTS architectures, such as CPUs and GPUs. In fact, this is
the main reason SpMV algorithms similar to Two-Step have not
been proposed in the literature despite its full streaming DRAM
access pattern. However, recently it has been shown in [13]
that this large merge network can be implemented efficiently
with custom hardware. This work implements such hardware
in an ASIC platform that is detailed in Sec. IV.

PageRank using SpMV. Our proposed basic implementa-
tion of PageRank using Two-Step SpMV is depicted in Figure 2.
As this is an iterative application, the entire Two-Step SpMV
operation is conducted once independently for each iteration.
The resultant dense PageRank vector (yi = xi+1) of iteration i
works as the source vector for SpMV in iteration i + 1. As the
entire resultant vector is too large to be stored in on-chip fast
memory, it is streamed out to DRAM at the end of each iteration.
Then in the next iteration, segments of xi+1 are streamed back
to computation core for Step 1 of the SpMV operation.

Off-chip Communication. It is evident that during each
iteration and during the transition between iterations, Two-
Step driven PageRank algorithm is guaranteed to only require
streaming DRAM accesses, which is imperative for high
performance and energy efficiency. Another important factor in
this regard is the off-chip traffic that is transferred between the
computation core and main memory. As there is no DRAM
random access involved in our proposed Two-Step driven
PageRank (PR TS), we can exactly calculate the off-chip
data traffic for this implementation. We compare this with
the baseline data traffic of PageRank driven by dot product
based SpMV algorithm (PR Base), where each element of the
resultant vector is computed directly from the dot product
of matrix row and source vector [15]. For PR Base, we
assume traditional eviction policy of LLC in CPU and 64B
cache line transfer between DRAM and LLC. We select this
baseline for comparison because in the literature it is difficult
to find shared memory PageRank implementation for very
large graphs with moderate fast storage. For example, [3] uses
moderate on-chip BRAM (8MB), but only handles matrix with
of maximum dimension of 2.3M×2.3M. On the other hand,
[4] developed an ASIC for SpMV using large fast random
access eDRAM (32MB). Nonetheless, this work reported to
only handle 8M×8M matrix at maximum. In this work, our
goal is to handle matrices with dimensions in the order of
hundreds of millions to billions.

Figure 3 depicts the total off-chip traffic comparison for
different fast memory sizes between PR Base (1st bar) and
PR TS (2nd bar) for PageRank with 20 iterations. For this
comparison, we have used a 1B×1B synthetic and uniformly
random sparse matrix with an average degree of 3. It is
evident that the biggest contributing factor in the off-chip
communication for PR Base is the redundant data for the
source vector x (striped gray region). This redundancy is due
to the cache line level block transfers for random accesses
to x, most of which never take part in actual computation.

Carnegie Mellon

iteration i iteration i+1

Step 1 Step 2 Step 1 Step 2

Stream out
to DRAM

Stream in
from DRAM

xi+1xi xi+1 xi+2

Only one source vector segment is stored in fast memory at any given time

Fig. 2: Two-Step SpMV driven PageRank with independent iterations (PR TS).

Fig. 3: Off-chip communication comparison for PageRank.
The transferred source vector data that actually takes part in
computation (deep blue region), is also larger for PR Base
due to regular evictions. The matrix data (red dotted region) is
same for both as matrix is streamed only once. However, the
overall payload (data that actually takes part in computation) is
larger in PR TS. This is due to round trip of the intermediate
vectors (light blue region that also includes resultant vector) in
Two-Step algorithm. This is the cost of streaming for Two-Step
SpMV. Nonetheless, the overall off-chip traffic is significantly
less for PR TS. Additionally, the entire off-chip traffic in PR TS
is transfered at DRAM streaming bandwidth, whereas the most
traffic for PR Base is transfered at DRAM random access
speed, which is orders of magnitude slower than streaming.
This comparison demonstrates the advantages of fully streaming
PR TS over non-streaming algorithms for highly sparse, non-
structured and large graphs.

It is noteworthy that none of the algorithms is significantly
benefited from the increase in fast memory. For PR Base,
even the largest fast memory is incapable to hold a sizable
portion of the source vector to render any meaningful reuse of
data. In the case of PR TS, the high sparsity in data causes
reduction operation in Step 1 to be rare. Hence, increase in fast
memory actually has a negligible effect in regard to off-chip
communication for PR TS. However, a larger fast memory
enables PR TS to handle bigger graphs (more nodes).

III. TRAFFIC OPTIMIZATION BY ITERATION OVERLAP

In Figure 2, we have seen that PageRank iterations in PR TS
are sequential and completely independent, where the resultant

dense vector (xi+1) is streamed out to dram and streamed
back into the computation core as the source vector in the next
iteration as it is too big to be stored in the fast memory. However,
we can parallelize the SpMV steps of consecutive iterations and
eliminate the off-chip communication for resultant and source
vectors, as depicted in Figure 4. The idea is that even though
we cannot store the entire xi+1, we can store a segment in the
fast memory. For example, during Step 2 of iteration i, instead
of sending the computed elements of xi+1 to DRAM, it is
written in fast memory until a full segment is stored. When the
first segment of source vector for iteration i + 1 is completely

Pseudocode 1: Two-Step SpMV driven PageRank with
off-chip communication optimization by iteration overlap.
1 T = Total number of iterations
2 for i = 0 to T − 1 do
3 STEP 1
4 for k = 0 to n − 1 do
5 Stream in Matrix Column Block Ak

6 u ← 0
7 for All rows Ak

p,: with nnz > 0 do
8 for Each non-zero Ak

p,q in Ak
p,: do

9 Random access to vector segment xk
[i+1]

10 up ← α ∗ Ak
p,q ∗ xk

q[i+1] + up

11 end
12 end
13 Sparsify u to vk

[i+1]
14 Stream out vk

[i+1] to main memory
15 end

16 STEP 2
17 for p = 0 to N − 1 do
18 for k = 0 to n − 1 do
19 Stream in vk

[i]

20 xp[i+1] ← xp[i+1] + v
k
p[i]

[Multiway merge]
21 end
22 c[i+1] ← c[i+1] + xp[i+1]
23 xp[i+1] ← xp[i+1] +

1−α
N c[i] [Constant addition]

24 end
25 Buffer x[i+1] on chip
26 end

Carnegie Mellon

1

Overlapped in timeiteration i iteration i+1

Step 1 Step 2 Step 1 Step 2

xi+1xi xi+1 xi+2

Two source vector segment storages in fast memory are required:
1) for computation of Step1 in iteration i+1 and 2) for storing output of Step 2 in iteration i.

1st 2nd

Fig. 4: Off-chip traffic optimized PageRank with iteration overlap (PR TS Opt).

Fig. 5: Off-chip communication of PR TS Opt vs PR TS.

available in fast memory, Step 1 of the Two-Step SpMV for
this iteration starts computation with the first column block of
the matrix. Concurrently, Step 2 of iteration i continues and
stores the second segment of the source vector (for iteration
i + 1) in another fast memory buffer. Thus, Step 2 of iteration
i and Step 1 of iteration i + 1 are overlapped in time and run
parallelly. A pseudocode of this entire operation, i.e. Two-Step
SpMV driven PageRank with off-chip traffic optimization by
iteration overlap (PR TS Opt), is shown in Pseudocode 1.

Another important benefit of PR TS Opt is that it achieves
significantly higher streaming speed than PR TS. This is
because none of the computation cores for Step 1 and 2 remains
idle in steady state, whereas for PR TS computation logic for
either step 1 or step 2 remains idle at any given moment. Hence,
PR TS Opt enables the entire silicon area to be active for all
the iterations (except the very first and very last one) that helps
in fully utilizing extreme off-chip bandwidth offered by modern
technologies such as 3D stacked DRAM. We will demonstrate
practical example of this in Sec. V.

The cost of achieving off-chip traffic optimization is that we
have to buffer two source vector segments in the fast memory
instead of one in PR TS. As a result, for any given amount of
fast storage, the maximum matrix dimension that PR TS Opt
can handle is roughly half of the maximum matrix dimension of
PR TS. Therefore, for PR TS Opt, there is a trade-off between
sparse matrix dimension vs performance and efficiency.

The communication reduction with PR TS Opt is depicted

in Figure 5. We generated five uniformly random graphs of
dimension 1B×1B with different sparsity, which is labeled on
the x-axis. The striped gray and solid blue bars represent the
total off-chip traffic for PageRank with 20 iterations using
PR TS and PR TS Opt accordingly. We can see that when the
graph becomes sparser (i.e. less average degree per vertex), the
ratio of reduction in data transfer with iteration overlap gets
larger. For example, with a very sparse graph of average degree
1.2 per vertex, 26% more off-chip DRAM traffic would incur if
optimization is not applied. This is because with sparser matrix,
the data transfer due to intermediate vectors in Two-Step SpMV
operation gets less significant relative to the data transfer due
to source and resultant vectors.

IV. ASIC FOR PAGERANK

In this section we demonstrate the custom ASIC to
accelerate PageRank, which is designed using Verilog and
currently being fabricated in 16nm FinFET technology. The
block diagram of the overall accelerator is shown in Figure 6.
The ASIC chip implements the computation logic required
for the Two-Step SpMV algorithm. To conduct Step 1 of
Two-Step algorithm, sixteen parallel single precision floating
point multiplier and adder chains are implemented. For Step
2, sixteen Multi-way Merge cores are designed, which are
able to parallelly merge 2048 lists (intermediate vectors) and
have a overall throughput of 16 resultant vector elements
per cycle. A radix-sort based data parallelization technique
is used to distribute loads among the merge cores. However,
implementation details of logic for data distribution, load
balancing and synchronization is beyond the scope of this
paper and, hence, skipped.

An actual image of the ASIC and key specifications are
given in Figure 7. As the chip is currently being fabricated,
these specifications are from post physical synthesis (after place
and route) layout of the design. Cadence® Innovus™ is used
for area and frequency measurement and Cadence® Voltus™ is
used for power measurement. One key aspect of this chip is
that it uses synthesized SRAM blocks, also known as Logic in
Memory (LiM) technology [16]–[18], distributed all over the
chip to facilitate fine grain data access during computation.

The two other parts of the accelerator, i.e. HBM main
memory and the eDRAM scratchpad, are emulated using Cacti

Carnegie Mellon

Multi-way Merge Core 0

Radix based parallelization

….000

….001

….111

….010 16 wide
output

Multi-way Merge Core 15
Intermediate

vector

Step 2

Logic -

Load/Store
+

Prefetch
+

Control
FP Add.FP Mult.

FP Add.FP Mult.

Matrix
block

Step 1

0

15 eDRAM
Scratchpad

HBM
Main

Memory

ASIC

Fig. 6: Block diagram of 16nm FinFET ASIC based architecture
for PageRank acceleration with Two-Step SpMV.

Carnegie Mellon

ASIC specifications
Frequency: 1.4 GHz
Occupied area: 7.5 mm2

Leakage power: 0.10 W
Dynamic power: 3.01 W
Total power: 3.11 W

Fig. 7: Image of the actual 16nm ASIC and specifications.

[19] and Destiny [20] tools. This ASIC is designed to work
with two 3D-stacked 2nd generation High Bandwidth Memories
(HBM2s) [12], [21] as main memory, which are connected
through interposer [22]. A single HBM2 provides 256GB/s
aggregated bandwidth. Hence, this chip is designed to saturate
the extreme off-chip bandwidth of total 512GB/s offered by
state of the art 3D stacked DRAM technology. On the other
hand, we have used eDRAM scratchpad as fast memory for
the accelerator. This scratchpad buffers source vector segments
and prefetched intermediate vector data.

Fast Memory Requirement. For better scalability, one
of the key goals of our proposed solution is to handle very
large graphs while not requiring large amount of fast storage
(such as SRAM or eDRAM based cache, scratchpad, etc.)
for random access. In our proposed accelerator, the ASIC’s
computation core requires 0.5MB of synthesized SRAM. For
source vector segment storage in Step 1, it requires 8MB of
eDRAM scratchpad. Additionally, for proper streaming in Step
2, DRAM page (row buffer) size blocks have to be prefetched
while accessing the 2048 intermediate vectors. The page size
of HBM2 is 1KB and we allocate 1.25KB to store prefetched
data for each list (instead 1KB) to hide loading latency. Hence,
we require 2048 × 1.25KB = 2.5MB of eDRAM buffer for
prefetched data. Therefore, the fast memory requirement of
our proposed solution is (0.5MB + 8MB + 2.5MB) = 11MB.
To put this into perspective, Table I lists other shared memory
solutions for PageRank and SpMV against our proposed Two-
Step SpMV driven PageRank with (PR TS Opt) and without
(PR TS) optimization by iteration overlap. We see that our

TABLE I: Fast memory requirement and largest graph dimen-
sion comparison of current and proposed solutions.

Solution Fast memory Max. vertices
size (MB) reported

FPGA [3] 8.4 2.3M
ASIC [4] 32 8M

CPU (single socket) [5] 20 95M
CPU (dual socket) [6] 50 118M
PR TS Opt (proposed) 11 2B

PR TS (proposed) 11 4B

Fig. 8: Execution time comparison for 20 iterations.

proposed solutions can operate on much larger graphs despite
having significantly less fast memory. This makes our solution
easier to scale as requirement of fast memory in bulk hinders
graph dimension to scale in many current solutions, such as
[4]. For example, if we increase the source vector buffer to
16MB from 8MB, we will be able to handle graphs with twice
more vertices with this ASIC, i.e graphs of 4B and 8B vertices
with PR TS Opt and PR TS accordingly. It should be noted
that the total number of edges only dictates the requirement
for main memory storage and has negligible impact on the
computation core design for our developed accelerator.

V. EXPERIMENTAL RESULTS

We ran PageRank with 20 iterations on our proposed
accelerator with a number of graphs mentioned in Table II.
Graph with prefix ‘kr’ are generated using the Kronecker graph
generator in [1]. The ones with prefix ‘Sy’ are uniformly
distributed random graphs representing worst case scenario
for that dimension and sparsity. Rest are real word graphs from
the cited sources.

TABLE II: Graph data sets used for experiments.

Graph # Nodes (M) Avg. Degree # Edges (M)

kr24 [1] 16.7 16.1 268
kr25 [1] 33.5 31.3 1047

Twi-m [23] 52.5 37.4 1963
PLD [24] 42.9 14.5 623
Web [25] 118 8.6 1014
Twi-f [26] 61.6 23.8 1468
SD1 [24] 94.9 20.4 1936
Sy-.5B 500 3 1500
Sy-1B 1000 2 2000
Sy-2B 2000 1.1 2200

The 3D memory sub-system is emulated with CACTI3D
[19] tool assuming 4 channels (each HBM2 has 2 pseudo-
channels with 64B I/O width). As the chip is currently in

Carnegie Mellon

346 GB/s

297 GB/s

432 GB/s

729 GB/s

System’s
streaming
speed

512 GB/s

Src. vec. load (step 1)

Partial SpMV (step 1)

Merge (step 2)

Concurrent
step 1 & 2

PR_TS PR_TS_Opt

Fig. 9: Sustained streaming speed of proposed methods.

Fig. 10: Main memory bandwidth utilization comparison.

fabrication facility, we use the specs given in Figure 7 and
conducted cycle accurate Verilog simulation. Column blocks of
the matrix is stored in row-major COO format as hyper-sparsity
causes CSR to be wasteful. Single precision is used for floating
point values and 32 bits are used for all indices. We compared
both our unoptimized (PR TS) and optimized (PR TS Opt)
implementations against two benchmarks. These recent works
are Bmark1 [5] (single socket, 20MB LLC) and Bmark2 [6]
(dual socket, 50MB LLC) CPU implementations of PageRank
that reported comparably large graphs. Bmark1 also took part
in HPEC Graph Challenge 2017.

Figure 8 depicts the comparison of execution time for
PageRank with 20 iterations among the proposed implemen-
tations and the benchmarks (for the graphs where data is
reported). While being able to handle much larger graphs,
our optimized proposed solution (PR TS Opt) is 12x and 7x
faster than Bmark1 and Bmark2 accordingly. It can be noticed
that our unoptimized solution (PR TS) is relatively slower than
PR TS Opt. Besides more off-chip traffic, the main reason
is that the ASIC is provisioned to saturate 100% 3D DRAM
bandwidth of the system when Step 1 and 2 of SpMV is running
in parallel. Figure 9 depicts the maximum streaming speed of
different parts of the chip for matrix ‘Sy-1B’. For PR TS, the
source vector load, partial SpMV and multi-way merge are
conducted sequentially. The streaming speed of the logic cores
for these tasks are below what the system can provide. On
the other hand, for PR TS Opt all the tasks in step 1, i.e.
source vector load and partial SpMV, runs in parallel with the
merging task in step 2. Thus, with the same amount of silicon
real estate, we can attain much higher streaming speed. As
shown in Figure 9, the maximum sustained streaming speed
of PR TS Opt is well over the system’s 512GB/s and actually
can saturate almost three HBM2s (768GB/s).

The bandwidth utilization is given in Figure 10. Due to
full streaming algorithm our proposed implementations achieve

Fig. 11: Comparison of number edges traversed per second.

Fig. 12: Comparison of entire system energy per edge traversed.
Note: Bmark2 reported DRAM energy only.

significantly higher bandwidth utilization than Bmark2. As
explained previously, PR TS Opt achieves ∼ 97% utilization
for all graphs due to overlap of step 1 & 2 across iterations
and having a streaming speed more than of two HBM2s.

Another metric of performance we used is the number of
edges traversed per second. We avoided using GFLOP/s metric
as this is data dependent and not representative of system’s
capability to process sparse data. As shown in Figure 11,
PR TS Opt provides 7x faster edge traversal rate than Bmark2.
Furthermore, we have compared the energy efficiency in
Figure 12. Despite using entire system’s energy for PR TS
and PR TS Opt against only the DRAM energy for Bmark2,
it is evident that our proposed system is up to two orders of
magnitude more efficient. This is due to less execution time,
small fast memory, less off-chip traffic and efficient 3D DRAM.

VI. CONCLUSION

In this work we have developed a custom ASIC hardware
accelerator with 3D DRAM for PageRank that can operate
on very large graphs (∼billion nodes), while providing high
performance and energy efficiency. This solution guarantees
full DRAM streaming access and proper utilization of off-chip
bandwidth. Moreover, it is readily scalable as it requires less
fast random access memory than most current architectures
in literature. The key to these achievements is the use of
Two-Step SpMV algorithm. As COTS architectures are not
suitable for this algorithm, we have developed custom ASIC
for PageRank implementation. Additionally, we have proposed
an optimization technique that reduces off-chip traffic and
increases the streaming speed of the computation core. Due
to reasonable requirements of hardware resources, this ASIC
accelerator design can also be ported to FPGA based platforms.

ACKNOWLEDGMENT

This work was supported in part by Defense Advanced
Research Projects Agency (DARPA) contract HR0011-16-C-
0038, “Circuit Realization At Faster Timescales (CRAFT)”.
This material is also based upon work funded and supported
by the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center [DM18-0845]. Additionally, this work
was sponsored by DARPA contract HR0011-13-2-0007, “Power
Efficiency Revolution for Embedded Computing Technologies
(PERFECT)”. The view, opinions, and/or findings contained
in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision,
unless designated by other documentation.

REFERENCES

[1] P. Dreher, C. Byun, C. Hill, V. Gadepally, B. C. Kuszmaul, and
J. Kepner, “Pagerank pipeline benchmark: Proposal for a holistic system
benchmark for big-data platforms,” CoRR, vol. abs/1603.01876, 2016.
[Online]. Available: http://arxiv.org/abs/1603.01876

[2] F. McSherry, M. Isard, and D. G. Murray, “Scalability! but at
what cost?” in Proceedings of the 15th USENIX Conference on
Hot Topics in Operating Systems, ser. HOTOS’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 14–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2831090.2831104

[3] S. Zhou, C. Chelmis, and V. K. Prasanna, “Optimizing memory
performance for fpga implementation of pagerank,” in 2015 International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
Dec 2015, pp. 1–6.

[4] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct 2016, pp. 1–13.

[5] S. Zhou, K. Lakhotia, S. G. Singapura, H. Zeng, R. Kannan, V. K.
Prasanna, J. Fox, E. Kim, O. Green, and D. A. Bader, “Design and
implementation of parallel pagerank on multicore platforms,” in 2017
IEEE High Performance Extreme Computing Conference (HPEC), Sept
2017, pp. 1–6.

[6] K. Lakhotia, R. Kannan, and V. K. Prasanna, “Accelerating pagerank
using partition-centric processing,” CoRR, vol. abs/1709.07122, 2017.
[Online]. Available: http://arxiv.org/abs/1709.07122

[7] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix–vector multiplication on emerging
multicore platforms,” Parallel Computing, vol. 35, no. 3, pp. 178–194,
2009.

[8] N. Bell and M. Garland, “Implementing sparse matrix-vector multi-
plication on throughput-oriented processors,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis. ACM, 2009, p. 18.

[9] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of
sparse matrix-vector multiply on gpus,” SIGPLAN Not., vol. 45, no. 5,
pp. 115–126, Jan. 2010. [Online]. Available: http://doi.acm.org/10.1145/
1837853.1693471

[10] X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast sparse matrix-vector
multiplication on GPUs: Implications for graph mining,” Proceedings
of the VLDB Endowment, vol. 4, no. 4, pp. 231–242, 2011.

[11] J. B. White III and P. Sadayappan, “On improving the performance of
sparse matrix-vector multiplication,” in High-Performance Computing,
1997. Proceedings. Fourth International Conference on. IEEE, 1997,
pp. 66–71.

[12] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “Hbm
(high bandwidth memory) dram technology and architecture,” 2017
IEEE International Memory Workshop (IMW), pp. 1–4, 2017.

[13] F. Sadi, L. Fileggi, and F. Franchetti, “Algorithm and hardware co-
optimized solution for large spmv problems,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), Sept 2017, pp.
1–7.

[14] A. Buluc and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in 2008 IEEE International Symposium on
Parallel and Distributed Processing, April 2008, pp. 1–11.

[15] S. Toledo, “Improving memory-system performance of sparse matrix-
vector multiplication,” IBM Journal of Research and Development,
vol. 41, pp. 711–726, 1997.

[16] D. Morris, K. Vaidyanathan, N. Lafferty, K. Lai, L. Liebmann, and
L. Pileggi, “Design of embedded memory and logic based on pattern
constructs,” in Symposium on VLSI Technology (VLSIT), 2011, pp. 104–
105.

[17] Q. Zhu, K. Vaidyanathan, O. Shachamy, M. Horowitzy, L. Pileggi, and
F. Franchetti, “Design automation framework for application-specific
logic-in-memory blocks,” in IEEE 23rd International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), July
2012, pp. 125–132.

[18] D. Morris, V. Rovner, L. Pileggi, A. Strojwas, and K. Vaidyanathan,
“Enabling application-specific integrated circuits on limited pattern
constructs,” in Symposium on VLSI Technology (VLSIT), 2010, pp. 139–
140.

[19] K. Chen, S. Li, N. Muralimanohar, J.-H. Ahn, J. Brockman, and
N. Jouppi, “CACTI-3DD: Architecture-level modeling for 3D die-stacked
DRAM main memory,” in Design, Automation Test in Europe (DATE),
2012, pp. 33–38.

[20] M. Poremba, S. Mittal, D. Li, J. S. Vetter, and Y. Xie, “Destiny: A
tool for modeling emerging 3d nvm and edram caches,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2015, March
2015, pp. 1543–1546.

[21] J. Standard, “High bandwidth memory (hbm) dram,” JESD235, 2013.
[22] K. Cho, H. Lee, H. Kim, S. Choi, Y. Kim, J. Lim, J. Kim, H. Kim,

Y. Kim, and Y. Kim, “Design optimization of high bandwidth memory
(hbm) interposer considering signal integrity,” in 2015 IEEE Electrical
Design of Advanced Packaging and Systems Symposium (EDAPS), Dec
2015, pp. 15–18.

[23] J. Kunegis, “Konect: The koblenz network collection,” in Proceedings
of the 22Nd International Conference on World Wide Web, ser. WWW
’13 Companion. New York, NY, USA: ACM, 2013, pp. 1343–1350.
[Online]. Available: http://doi.acm.org/10.1145/2487788.2488173

[24] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer, “The graph structure
in the web analyzed on different aggregation levels,” The Journal
of Web Science, vol. 1, no. 1, pp. 33–47, 2015. [Online]. Available:
http://dx.doi.org/10.1561/106.00000003

[25] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011. [Online]. Available: http://doi.acm.org/10.1145/2049662.2049663

[26] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a
social network or a news media?” in Proceedings of the 19th
International Conference on World Wide Web, ser. WWW ’10. New
York, NY, USA: ACM, 2010, pp. 591–600. [Online]. Available:
http://doi.acm.org/10.1145/1772690.1772751

http://arxiv.org/abs/1603.01876
http://dl.acm.org/citation.cfm?id=2831090.2831104
http://arxiv.org/abs/1709.07122
http://doi.acm.org/10.1145/1837853.1693471
http://doi.acm.org/10.1145/1837853.1693471
http://doi.acm.org/10.1145/2487788.2488173
http://dx.doi.org/10.1561/106.00000003
http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/1772690.1772751

