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Abstract—The field of High Performance Computing (HPC) is
defined by application in physics and engineering. These prob-
lems drove the development of libraries such as LAPACK, which
cast their performance in terms of more specialized building
block such as the BLAS. Now that we see a rise in simulation
and computational analysis in fields such as biology and the social
sciences, how do we leverage existing HPC approaches to these
domains. The GraphBLAS project reconciles graph analytics
with the machinery of linear algebra libraries. Like their Dense
Linear Algebra (DLA) counterpart, the GraphBLAS expresses
complex operations in terms of smaller primitives.

This paper focuses on efficiently storing real world networks,
such that for these graph primitives we can obtain the level of per-
formance seen in DLA. We provide a hierarchical data structured
called GERMV, which is an extension of our previous Recursive
Matrix Vector (RMV). If the network in question exhibits a
scale-free structure, namely hierarchical communities, then our
data structure enables high performance. We demonstrate high
performance for Sparse Matrix Vector (spMV) and PageRank
on real world web graphs.

I. INTRODUCTION

In this article, we extend our previous work in [1] on Sparse
Matrix-Vector (spMV) computations over synthetic scale-free
networks to graph operations over real-world scale-free net-
works. We bridge the prior work by identifying hierarchical
structures in real-world graphs that allow us to map the graph
data to the memory hierarchy. We take advantage of this
structure using our hierarchical storage format. This structure
allows us to efficiently compute spMV and spMV-like oper-
ations on modern machines with deep cache topologies. In
Figure 1, we put our approach to the test for the PageRank
algorithm on web data. Our implementation outperforms Ligra
– the state of the art for shared memory systems.

The contribution of this work are as follows:

• Clusters in scale-free graphs are important for infor-
mation flow, therefore we show how to hierarchically
partition real world graphs using their clusters.

• We capture these clusters in our hierarchical data struc-
ture, GERMV, which allows efficient access and manip-
ulation of these clusters.

• We demonstrate how to obtain performance, using these
clusters stored in our data structure, in our small
GraphBLAS-like library.
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Fig. 1. Our implementation of PageRank, using our GERMV data structure,
outperforms Ligra on web graphs of various sizes. Our data structure and
algorithm allow us to effectively use the data cache for operations over real
world graphs. The key is in identifying the hierarchical clusters in the dataset,
storing them in an efficient structure, and computing on them in a cache-aware
manner.

II. BACKGROUND

The graph computation story is rapidly unfolding, and we
can classify the emerging work into two distinct, but not
necessarily incompatible approaches: the data flow approach
and the linear algebra-like approach.

In the data flow approach, the graph frameworks decouple
the computation from the data access pattern. Graph operations
are implemented in terms of small atomic functions over
vertices and edges, and these functions are executed when
their inputs have been modified. This process either occurs as
bulk computations or as the new data is made available.This
process continues until no more vertices or edges are modified.
Prime examples of this approach include Pregel [2], Graphlab
[3], Ligra [4]. There are a myriad of optimizations to this
approach, for example GraphChi [5], X-Stream [6] reshape
the graph to take advantage of the memory hierarchy. A more
aggressive optimization seen in Galois [7], and its extension
in Elixir [8], introduce the notion of speculation by requiring
the atomic functions be invertible. Many paths in the graph
are explored speculatively, and if a path is no longer viable,
its work is undone by applying the inverse of the sequence of
instructions that led to it.
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Fig. 2. In the top left, we illustrate an example of a scale-free graph. The key
features are the hub vertices and the cluster communities surrounding them.
We highlight these clusters in orange, green and blue. On the top right, we
show the corresponding adjacency matrix to the graph. Note that we highlight
the elements that correspond to the clusters. On the bottom left, we show a
coarsened view of the graph, where we replace the clusters with super-nodes.
To the right of that we show the corresponding adjacency matrix. Our GERMV
data structure captures the structure of the graph with multiple coarsened views
of the dataset, in a manner that allows efficient access to these clusters.

For the linear algebra approach to graph analytics, we
have the Combinatorial BLAS [9] and Knowledge Discovery
Toolbox [10], which represent graph operations as matrix
operations over specialized semirings. These semirings cap-
ture the desired graph computation by replacing the addition
and multiplication operator with functions fitting the graph
operations. These libraries leverage many of the approaches
used for sparse matrix computations on distributed memory
systems and reduce the burden of obtaining performance on
the programmer. This approach is made into an API in the
GraphBLAS project [11] through the use of C++ templates.
The goal of the GraphBLAS is to define an interface for
common graph analytic routines that can be tuned to the target
system. The result is that algorithms for these routines are
implemented as iterative sparse matrix vector products on user
defined semirings.

Hierarchical Clustering in Real-World Graphs. The main
assumption, on which we base our data structure, is that real-
world scale-free networks contain a hierarchical clustering
behavior, and that information flow through these graphs occur
predominately within these clusters. We use this assumption
to construct a data structure that captures this behavior, and
we compute on this structure in a way that maximizes cache
reuse of these clusters. Prior work has observed this key
property, that in real-world networks there is the hierarchical
organization of clusters [12], [13], [14]. Vertices in these
graphs hierarchically organize to form a recursive cluster
structure. We can visualize this with the hub and spoke model.
The vast majority of vertices have only a few edges (spokes)
that connect to vertices with many edges (hubs). If we were
to collapse the hubs and their spokes into a single super-node
we would see the exact same hub and spoke pattern over these
super-nodes. Thus, we can repeat this pattern until there is a
single super-node. We illustrate this in Figure 2.

A consequence of this hierarchical topology, hubs are crit-
ical for information flow into their communities – a notion
reinforced by observations in real-world networks. For ex-

ample, in [15] the author observed that in infection models
over scale-free graph, highly connected hubs contract and
spread the infection very quickly. Thus, providing preferen-
tial treatment to highly connected hubs decrease the overall
infection rate. Similarly, the authors in [16] observed that for
viruses spreading on computer networks, that topology, not
the spreading rate of the virus, determines the overall rate in
which machines are infected. In [17], the authors provided
another perspective of information flow through scale-free
topologies. They observed that information originating from
a community is more important within the community than to
vertices outside of the community. This is explained by the
fact that, in scale-free graphs, vertices within a community
have high connectivity with each other, but very little connec-
tivity outside. Communities in real-world scale-free networks
are hierarchically clustered. Information flowing throughout
the graph travels through highly connected hubs, but most
information within a community flows locally. We exploit
this by storing the graph in a manner that preserves this
hierarchical structure and matches it to the cache hierarchy.
In the next sections, we describe the graph operations we
target, the algorithms selected in their implementation, and
the optimizations we perform. We take advantage of the
hierarchical to extract performance at each step of the way.

Operations over Graphs. In this article, we target Sparse
Matrix Vector Product (spMV) and the PageRank operation.
The spMV operation computes y = Ax, where y and x are
dense vectors and A is a sparse matrix. This operation serves
as a proxy for more complex operations and has highly tuned
implementations on modern hardware. We will demonstrate
how graph algorithms can be built on spMV, and why it is
important that this operation is efficient. Our second operation,
PageRank [18], determines the importance of website based
on the probability that a random web surfer will reach that
page. In this GraphBLAS style, we implement this as an
iterative sparse Matrix-Vector product where for each vertex
we compute the weighted sum of all incoming edges. Between
every iteration the weights of each vertex are dampened and
a fudge factor is added. This continues until the difference
between two iterations is less than a given threshold.

Graph Operations as Matrix Operations. In this chapter,
we implement graph operations using the approach in the
GraphBLAS [11]. In this approach, graph operations are
represented as transformations of a module defined over a
particular semi-ring that is selected for the operation.

Spacial Blocking for Graphs. We want to capture clusters
hierarchically in blocks that fit the memory hierarchy. This
builds on the assumption that information flows within scale-
free graphs and leverages the fact that nearby vertices are more
likely to communicate with each other than distant neighbors.
By capturing the proximity of this vertices in cache, we can
insure that communication between them is efficient. Thus,
if two vertices are neighbors in the graph then they will be
neighbors in memory and utilize spacial locality.
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Fig. 3. In this figure, we show our GERMV object containing the graph from
Figure 2. The top level represents a coarse view of the graph, and is stored
as a sparse matrix container of pointers. The bottom tier contains blocks of
elements from graph, and is stored as a series of sparse matrix containers.
On the right, we show how these sparse matrix containers can be stored
contiguously in memory. This allows efficient computation over the data.

III. MECHANISM

In the previous section, we discussed the idea that real-world
scale-free networks exhibit a hierarchical cluster structure that
we can use to hierarchically partition a graph. We described
a method for representing graph algorithms in terms of linear
algebra-like operations. Lastly, we described how to use the hi-
erarchical partitioning for space and time tiling on these linear
algebra-like algorithms. In this section, we describe how we
go from this theory – hierarchical partitioning, linear algebra
representation and space/time tiling – to a high performance
implementation of a graph library.

We build our graph library around a generalized version
of the Recursive Matrix Vector (RMV) data structure that
we presented in [1]. This structure allows us to capture
the hierarchical recursive structure of the graph and traverse
through that structure efficiently. We then develop recursive
graph algorithms that operate on this structure. These al-
gorithms algorithms divide the graph into very small sub-
graphs, which are computed on using extremely efficient,
automatically generated kernels.

Generalized Hierarchical Sparse Framework. In our
previous work [1], we developed a hierarchical sparse matrix
framework for scale-free networks. This implementation was
optimized for Kronecker Graphs [19], a class of scale-free net-
works. This data structure stores structured Kronecker Graphs
hierarchically and efficiently in memory. While Kronecker
Graphs can approximate real-world networks, more flexibility
is needed for storing real-world networks. For this flexibility,
we generalize our RMV data structure to accommodate real-
world data, while retaining the hierarchical sparse structure.
We call this format Generic Recursive Matrix Vector Storage
(GERMV), and we illustrate this data structure in Figure 3.

Like the RMV data structure, GERMV is a tree-like hi-
erarchical matrix storage. It stores a matrix as a hierarchical

nesting of blocks. Further, each of these blocks is described by
a node. This structure is very similar to KD-trees [20] if each
dimension could be partitioned more than once. Alternatively,
this structure can be viewed as Hierarchically Tiled Array [21]
or FLASH [22] if the base data type in each tile could be
sparse instead of dense.

The key difference between the RMV data structure and
the GERMV data structure is the generalization of indexing.
In the original RMV structure, indexing is restricted to a bit-
matrix, but in the GERMV indexing can be done in COO,
CSR, bit matrix, or a dense matrix format. To accommodate
generic indexing and generic data container in C, we break
up the GERMV container into two pieces, a base container
that determines the payload and a payload that contains the
indexing and data elements. We illustrate this structure in
Figure 4 and in the following listing we show the base
container.

typedef struct germv_base_ts
{

enum type;
void *payload

}

The field type determines how the following field payload
needs to be interpreted. Essentially, this is one method for
implementing class-like structures in C.

typedef struct payload_dense_double
{

double [][] data;
}

typedef struct payload_coo_uint16
{

uint8_t row_idx;
uint8_t col_idx;
uint16_t data;

}

In this code snippet, we demonstrate how to capture dif-
ferent formats as wrappers. If the base object’s type is dense
double then its payload is cast using the appropriate wrapper.
This approach to classes provides us with a low overhead
method of implementing an abstract hierarchical matrix type.
In the next section, we demonstrate how we use GERMV
object.

Abstract Matrix Types. The GERMV structure allows us
to capture a graph as a hierarchical partitioning. This is done
by creating a tree-like representation of the matrix where each
level of the tree represents a partitioning of the parent node.
To accommodate this, the GERMV allows for arbitrary data
types. Typically, the leaf blocks will contain a value data type
(i.e. float or int), whereas the interior nodes - or hierarchically
blocks - have values with a pointer data type. These pointers,
in turn, point to their child blocks. We can continue this
recursively until we hit the leaf nodes. For example, in the
following listing we describe a payload type that indexes using
the COO format:
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Fig. 4. Every item in our GERMV object is stored in class-like containers. The
header of this container signifies the type of data that follows. This method
for encoding the data allows us to pack the graph in a contiguous stream from
memory.

typedef struct payload_coo_germv_base
{

uint8_t row_idx;
uint8_t col_idx;
germv_base_t data;

}

Given this pointer data type, we can create a hierarchically
partitioned graph with a single vertex and edge, one leaf node
and one interior root node.

#define CONSTRUCT(type) ...
#define ADD_ELEM(package,i,j,data) ..

germv_base_t *interior =
CONSTRUCT( payload_coo_germv_base );

germv_base_t *leaf =
CONSTRUCT( payload_coo_float );

ADD_ELEM(interior, 0,0, leaf);
ADD_ELEM(leaf, 0,0, 3.14f );

We create two GERMV objects, one is the root or interior
node and the other is the leaf node. We use a pointer data
type with COO indexing for payload type for the root node.
For the leaf node we use COO indexing with a floating point
indexing. Once the objects are constructed we attach the leaf
to the interior by adding it as an element and similarly we add
an edge and value to the leaf using the same mechanism.

A High Performance spMV Implementation. Now that
we have a hierarchical data structure, we can build recursive
algorithms for the operations we are interested in. We start
with Sparse Matrix Vector Product (spMV) because it is an
important operation on its own and because it will form the
basis of the graph operations that we are ultimately interested
in. The spMV computes y = Ax where y ∈ Rm, x ∈ Rn and
A ∈ Rm×n. This operations requires mn multiplications and
additions and at the very least 2m+n+mn memory accesses.
The latter figure assumes perfect reuse of the y and x vector.
The cost of memory access is typically more expensive than
computation, therefore we want to maximize reuse. In order
to do this, we construct a recursive spMV over our GERMV
and we match the block sizes – really cluster sizes – to fit the
cache hierarchy. After wWe divide the GERMV matrix into

blocks, then recursively apply these spMV algorithms until we
reach the base elements of the matrix. We realize this process
in the following code snippet:
spmv_dispatch(A,x,y)

{
if( is_leaf(A) )
spmv_kernel(A,x,y)

else if( is_node(A) )
spmv_block_row_and_col(A,x,y)

}

The algorithm first determines if we are dealing with a
leaf GERMV container (an object with real values) or a
node GERMV container (an object with pointer values), then
dispatches to the appropriate code. If the GERMV is a node,
then spMV is computed recursively on the non-NULL pointer
values by calling the dispatch function on the value. If the
GERMV is a leaf, then it is computed.

spmv_block_row_and_col(A,x,y)
{

for( i = 0 .. mb-1 )
for( j = 0 .. nb-1 )

Ab = get_elem( A, i,j );
yb = get_elem( y, i );
xb = get_elem( x, j );
spmv_dispatch( Ab,xb,yb )

}

In this listing we show a blocked spMV algorithm that
partitions both the rows and columns. The values mb and
nb correspond to the number of blocked rows and columns,
respectively. If we effectively capture the clusters of the graph
in our GERMV object, then these partitions correspond to the
clusters in the graph. This insures that we are operating on the
graph clusters within the cache. In the next listing, we show
the base case for our spMV.

spmv_kernel(A,x,y)
{

for( i = 0 .. mb-1 )
for( j = 0 .. nb-1 )

y[i] += A[i][j] * x[j]
}

To summarize our spMV implementation, we divide the
operation by recursive applications of a blocked row and
column spMV algorithm. The block sizes for each recursion
match the size of the cache at each level of the hierarchy.
Further, the partitioning of the spMV operation and the block
sizes determine how the matrix is recursively stored in our
GERMV object. Assuming that the vertices in the adjacency
matrix are ordered in locality preserving manner, then our
approach keeps graph cluster in cache and effectively uses
that locality.

IV. ANALYSIS

For our experiments, we use a graph from the Stanford
WebBase [23]. The graph is a web crawl of Berkeley and
Stanford websites called web-BerkStan. Each vertex represents
a page and an edge represents a hyperlink from one page to



the other. The graph itself has 685, 230 vertices and 7, 600, 595
edges.

In order to show a trend over a range of graph sizes with
same overall graph behavior, we created ten graphs from the
original web-BerkStan, G = (V,E). We label all of the
vertices vi ∈ V , where 0 ≤ i < |V | and create the ten sub
graphs from Gi = (Vi, Ei), where Vi = vj ∈ V |j ≤ i and
Ei = E ∩ Vi × Vi. By using sub-graphs of a range of sizes
we can examine the behavior of our library as the graph size
changes, but the underlying structure stays the same.

Depth Row Block Size (mb) Col Block Size (nb)
1 720896 720896
2 65536 65536
3 16384 16384
4 4096 4096
5 1024 1024
6 256 256

Fig. 5. These are the GERMV data structure blocking dimensions used in
our experiments.

Storing the Graph in the GERMV Object. For all of the
experiments, we pack the target graph in a GERMV object
and perform the spMV and PageRank operations over this
packed object. The partition size and number of partitions is
dependent on the organization of the cache hierarchy and the
size of each cache. For example, in the graph G720896 we
partition and store the graph hierarchically according to the
blocking dimensions listed in Figure 5. To illustrate how the
graph is captured, we show views of the adjacency matrix at
various granularity of the GERMV object in Figure 6. At each
depth of this table we provide spy-plot of the non-zero blocks
at that depth, along with a histogram of the density of each of
those blocks. With the exception of depth d = 6, each graph
of depth d = n corresponds to a coarsening of the graph of
depth d = n+1. By starting with a graph where the elements
are labeled in an order that maintains the cluster structure of
the graph at depth d = 6, we can maintain that clustering at
each level of d < 6 through coarsening. Two key observations
are that the distribution of block densities follows a power law
distribution, and the non-zero blocks are fairly dense despite
the graph being very sparse.

Overall Performance. In the top row Figure 7, we show the
results for our overall multi-threaded performance experiment.
In this experiment, we compare our performance against the
CSB [24] and MKL’s COO implementation of spMV. The
MKL COO implementation is selected as reference imple-
mentation and the CSB implementation is the current state-
of-the-art. On both machines, we use the maximum number
of threads available. Our spMV GERMV efficiently uses the
system cache, multiple threads and the memory bandwidth.
In both results, our performance is significantly greater than
CSB. In particular on the Kaby Lake (Top Left) when the
vector is small enough to fit in the cache the performance is
30% greater than CSB. This we attribute to our efficient use of
the data cache. It is worth noting that the CSB implementation
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Fig. 6. We store our target data set – web-BerkStan – hierarchically in our
GERMV object. In this table we show the density of the data stored at each
depth of this hierarchy. On the left we provide a heatmap that shows the
density of each block, and on the right we have a histogram comparing the
densities of these blocks.
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Fig. 8. In this experiment we measure the performance of two implementa-
tions using different data widths (1 and 2 Bytes) for storing indexing data.

was not designed for NUMA systems, which is why on the
Xeon our performance is substantially higher than CSB.

Parallel Scaling. In the experiments shown in the bottom
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Fig. 7. Top: We compare the performance of our spMV implementations against CSB and MKL’s COO implementation for various sized subgraphs of a
web graph. We do this on two different machines. Bottom: We evaluate the performance scaling of our implementation as we increase thread count.

row Figure 7, we compare the performance of our GERMV
spMV implementation for various thread counts. The idea is
show that our implementation scales, as we add additional
threads. On the Kaby Lake (Bottom Left) we can divide the
results into two parts, in cache and out of cache. For the out
of cache behavior our speedup is linear with respect to the
number of threads. When the problem size fits in the cache,
we get super linear speedup because as we add threads our
implementation has access to more cache and therefore can
have greater reuse. On the Xeon (Bottom Right) we see a more
linear speedup as we increase the thread count. The takeaway
is that our implementation scales across multiple threads and
multiple sockets.

Compact Indexing. Our GERMV implementation allows
us to use arbitrary indexing format. This feature allows us to
use an indexing format that minimizes the amount of overhead
needed for indexing. Because the indices we use will always
be smaller than the block sizes selected, we only need to use
enough bytes to encode those indices. In the experiment in
Figure 8, we compare the use of 1 Byte indexing versus 2
Bytes for indexing. When the number of vertices fit in the
cache there is no difference in performance. However, the
moment our implementation needs to access main memory
the extra overhead reduces performance.

V. SUMMARY

In this article, we extended our previous work on a scale-
free data structure (RMV) and generalized it to real world

graphs using our GERMV object. We found that we could
use the hierarchical clustering behavior of real world graphs
to guide how we partition the graphs, which in turn determined
how we transformed the data layout. This gives us the benefit
that neighboring vertices, which communicated frequently
with each other, are cache adjacent. Because these small sub-
graphs are cache resident, we can use tuned kernels to process
them. By combining these two pieces, efficient layout and
kernels, our spMV and PageRank outperform the state of the
art. Our implementation assumes the input graph is efficiently
ordered such that the diagonal blocks represent clustered
communities. For the dataset we tested, the ordering was
sufficient. However, we can improve the ordering using graph
partitioning at the expense of an additional preprocessing step.
For future work we want to focus on how the data is collected
and how we can modify this step to improve the ordering of
the resulting data. The rationale is to match the traversal of
the desired graph algorithm to the traversal. This integrates the
data layout transformation in the collection and could insure
that data arrives and is stored in the order that it will be
computed.
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