
0

50

100

150

200

250

300

512 1024 2048 4096 8192 16384

FFT Size

Naïve HLS Xilinx HLS

HLS: improved productivity in FPGA programming

Implement FFT in HLS often causes inefficient use of resources

Can we change the way using HLS for retaining the resource efficiency?

HLS cannot handle port conflict automatically

Make it explicit

void pease_fft(type X[N], type Y[N]) {

#pragma HLS INTERFACE axis port=X,Y

#pragma HLS ARRAY_PARTITION variable=X,Y \

cyclic factor=2

for (j=0; j<N/2; j++) {

#pragma HLS PIPELINE

in[0] = X[2*j+0]; in[1] = X[2*j+1];

write_stage<bitrev>(buf, in);

}

for (i=0; i<LOG2N; i++) {

for (j=0; j<N/2; j++) {

#pragma HLS DEPENDENCE variable=buf inter false

#pragma HLS PIPELINE

if (i==0) read_stage<bitrev>(buf, in);

else read_stage<stride2>(buf, in);

twid_mult(in, twiddled, i);

radix2_butterfly(twiddled, out);

write_stage<stride2>(buf, out);

}

}

for (j=0; j<N/2; j++) {

#pragma HLS PIPELINE

read_stage<stride2>(buf, out);

Y[2*j+0] = out[0]; Y[2*j+1] = out[1];

}

}

Original FFT feedback path: from streaming to streaming

Revised feedback path: from BRAM to BRAM

Latency of radix-2 FFT

Resource Utilization of radix-4 FFT-1k

Optimizing FFT Resource Efficiency on FPGA using High-level Synthesis
Carnegie Mellon UniversityGuanglin Xu, Tze Meng Low, James C. Hoe, Franz Franchetti Contact: guanglinxu@cmu.edu

This work was sponsored partly by the DARPA BRASS program under
agreement FA8750-16-2-003. The content, views and conclusions presented
in this document are those of the authors(s) and do not necessarily reflect
the position or the policy of the sponsoring agencies.

Introduction

Yes! Make the datapath explicit in HLS code!

Map HLS Loop to Feedback Path Experimental Results

Conclusion

Reduce latency significantly

Device: Xilinx ZC706

Acknowledgements

• Peak clock frequency: 400 MHz vs. Naïve HLS ~200 MHz
• Similar resource consumption, fewer FFs at 100 MHz

• Make the FFT datapath explicit improves the design quality
• Achieve similar performance and resource utilization to the

Xilinx RTL reference
• Could potentially apply to other algorithms

Bit Reversal Permutation

Naïve HLS: Naïve HLS implementations
Xilinx: RTL reference from ___, FFT LogiCORE IP, 2017. [Online]
HLS: Implementations with explicit datapath

Implementations

BRAM Utilization Rate

Implementations

Peak Frequency

6 4 2 0

7 5 3 1

3 1 2 0

7 5 6 4

stream
permutation

feedback path

Read stage
(Stride2)

Read stage
(Bitrev)

Read stage
(Stride2)

Write stage
(Bitrev)

Write stage Read stage

BRAM

Datapath Skeleton for Permutations

write

write

read

read

BRAM
Switch

network
Switch

network

Revised Block Diagram

feedback path

Latency
(thousand cycles)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 MHz 200 MHz 300 MHz 400 MHz

DSP BRAM LUT FFResource Utilization Normalized to Xilinx

Clock Frequency

High-level
Synthesis

int main() {

func_0();

func_1();

…

return 0;

}

C/C++ Code

Iterative Datapath for the Pease FFT Algorithm

DFT2Bitrev Stride2Twid

Make Permutation Explicit

Stream interface
Stream width=2

Pipeline

Disable
conservative
dependency
analysis

Vivado HLS Code and Pragmas

1 0

Port Conflict on BRAM

0

1

RTL: HLS:

Use a systematic method from Püschel et al. J. ACM. 2009, 56, 1

Results in long latency

Natural to map from a HLS loop

No direct mapping from HLS code

Simplify array indexing

Easier to map from a loop

(Higher is better)

void switch(T in[2], T out[2], bool on) {

out[0] = in[(on==true)?(1):(0)];

out[1] = in[(on==true)?(0):(1)];

}

Fuse computation
and permutation
into one loop

(Higher is better)

DFT2Twid
Write stage

(Stride2)

Much better than naïve; comparable to RTL

