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HLS: improved productivity in FPGA programming

Implement FFT in HLS often causes inefficient use of resources

Can we change the way using HLS for retaining the resource efficiency?  

HLS cannot handle port conflict automatically

Make it explicit

void pease_fft(type X[N], type Y[N]) {

#pragma HLS INTERFACE axis port=X,Y

#pragma HLS ARRAY_PARTITION variable=X,Y \

cyclic factor=2

for (j=0; j<N/2; j++) {

#pragma HLS PIPELINE

in[0] = X[2*j+0]; in[1] = X[2*j+1];

write_stage<bitrev>(buf, in);

}

for (i=0; i<LOG2N; i++) {

for (j=0; j<N/2; j++) {

#pragma HLS DEPENDENCE variable=buf inter false

#pragma HLS PIPELINE

if (i==0) read_stage<bitrev>(buf, in);

else read_stage<stride2>(buf, in);

twid_mult(in, twiddled, i);

radix2_butterfly(twiddled, out);

write_stage<stride2>(buf, out);

}

}

for (j=0; j<N/2; j++) {

#pragma HLS PIPELINE

read_stage<stride2>(buf, out);

Y[2*j+0] = out[0]; Y[2*j+1] = out[1];

}

} 

Original FFT feedback path: from streaming to streaming

Revised feedback path: from BRAM to BRAM

Latency of radix-2 FFT

Resource Utilization of radix-4 FFT-1k
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Introduction

Yes! Make the datapath explicit in HLS code!

Map HLS Loop to Feedback Path Experimental Results

Conclusion

Reduce latency significantly

Device: Xilinx ZC706 
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• Peak clock frequency: 400 MHz vs. Naïve HLS ~200 MHz
• Similar resource consumption, fewer FFs at 100 MHz

• Make the FFT datapath explicit improves the design quality 
• Achieve similar performance and resource utilization to the 

Xilinx RTL reference
• Could potentially apply to other algorithms

Bit Reversal Permutation

Naïve HLS:   Naïve HLS implementations
Xilinx: RTL reference from ___, FFT LogiCORE IP, 2017. [Online]
HLS:               Implementations with explicit datapath
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int main() {

func_0();

func_1();

…

return 0;

}

C/C++  Code

Iterative Datapath for the Pease FFT Algorithm
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RTL: HLS:

Use a systematic method from Püschel et al. J. ACM. 2009, 56, 1

Results in long latency

Natural to map from a HLS loop

No direct mapping from HLS code

Simplify array indexing

Easier to map from a loop

(Higher is better)

void switch(T in[2], T out[2], bool on) {

out[0] = in[(on==true)?(1):(0)];

out[1] = in[(on==true)?(0):(1)]; 

}

Fuse computation 
and permutation
into one loop

(Higher is better)

DFT2Twid
Write stage

(Stride2)

Much better than naïve; comparable to RTL 


