
A Scale-Free Structure for Power-Law Graphs
Richard Veras, Tze Meng Low and Franz Franchetti

Department of Electrical and
Computer Engineering

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Email: {rveras, lowt, franzf}@cmu.edu

Abstract—Many real-world graphs, such as those that arise
from the web, biology and transportation, appear random and
without a structure that can be exploited for performance on
modern computer architectures. However, these graphs have a
scale-free graph topology that can be leveraged for locality. Exist-
ing sparse data formats are not designed to take advantage of this
structure. They focus primarily on reducing storage requirements
and improving the cost of certain matrix operations for these
large data sets. Therefore, we propose a data structure for storing
real-world scale-free graphs in a sparse and hierarchical fashion.
By maintaining the structure of the graph, we preserve locality
in the graph and in the cache. For synthetic scale-free graph
data we outperform the state of the art for graphs with up to
107 non-zero edges.

I. INTRODUCTION

The goal of this work is to provide an efficient data structure
for storing and computing on real-world scale-free graphs.
We target scale-free graphs because many real-world networks
share that topology [1], [2]. In these graphs, there are a small
number of nodes with many edges and many nodes with only
a few edges. The nodes with many connections are referred to
as hub nodes and they connect many neighboring nodes within
their cluster. If we zoom into one of these neighborhoods we
would see this behavior repeat, as illustrated by Figure 1. In
this paper, we leverage the characteristics of scale-free graphs
in order to create an efficient data structure that provides fast
access to clusters of nodes in a hierarchical fashion.

Our data structure uses a hierarchical sparse data format
to efficiently map scale-free graphs to modern computer ar-
chitectures. This format captures the structure of the graph
at multiple levels of resolution. By varying the resolution at
a given level, we can fit that sub-graphs to the caches of
the target system. This allows us to maximize cache reuse
and minimize bandwidth requirements for Sparse Matrix-
Vector (SPMV) like operations. Additionally, by using a sparse
encoding at each level of the hierarchy, we can reduce the
storage requirements of our format.

We recognize that the domain expert has extremely valuable
knowledge on the structure of their graph and the details
underlying the problem from which it came. In order to capture
this structure, we rely on the domain expert to provide a
mapping function between the structure of the graph and our
data structure.

Fig. 1. In this cartoon, we demonstrate the recursive nature of a scale-free
graph. At the highest view, we see that a few key vertices (hubs) contain the
majority of the edges. We can partition the graph based on these key vertices.
If we descend into a sub-graph created by this partitioning, we see the same
behavior.

A. Our Contribution

This work can be broken into three key pieces.
• We provide a hierarchical sparse format called Recursive

Matrix and Vector (RMV). This hierarchical format cap-
tures the structure of the graph using a tree of specialized
containers.

• We provide an Application Programming Interface (API)
that allows the domain expert to construct these RMV
objects from domain knowledge. The expert can pass the
structural information of the graph to our data structure.

• Lastly, we perform a performance analysis of our format
using synthetic scale-free graphs.

II. RELATED WORK

The purpose of our structure is to preserve the locality of the
graph in the memory hierarchy. This is motivated by the ideas
in [3]. The authors suggest that when distributing a matrix on
a parallel machine, it is more important to distribute a matrix
based on the elements of the vector rather than on the structure
of the matrix. For example, if we discritize the body of an
airplane for a simulation, we would want to keep the vertices
from the wings near each other, the vertices on the fuselage
clustered together and the vertices on the engine close to each
other, because these neighboring vertices are more likely to
interact with one another. Clustering these neighboring vertices
in memory would insure that these interactions occur in cache.

In [4] the authors leveraged this idea of preserving the
structure of the problem in memory for hp-FEM. They did
this by using the original structure of the problem to guide its

assembly in a hierarchical dense matrix storage format [5]. By
utilizing both domain knowledge and a data structure that is
amenable to hierarchical storage, the authors bypass the need
for a graph partitioner. This is possible because they can insure
that physical elements neighbor each other in memory.

In a similar vein, we want to use the structure to partition
and store real-world graphs in a hierarchical fashion. Our work
provides a hierarchical data structure and a mechanism that
allows the expert to pass structural knowledge. This knowledge
the user provides – using our API – guides the construction
of the hierarchical data structure.

In the airplane example, we partitioned the vertices based
on the mechanical component that contained them. Those
vertices that exist in the same component are more likely to
communicate with each other than with distant neighbors. Like
the mechanical components, the neighboring vertices around
a well connected vertex hub form a well connected clusters
in a scale-free graph. We would like to preserve this graph
structure in the memory hierarchy, such that a cluster would
take advantage of cache locality. To achieve this we would
want to partition our graph about those hubs. The domain
expert would need to provide our framework with a mapping
function that captures this partitioning.

a) Existing Frameworks: If the user can provide us with
domain knowledge of the graph’s structure, then we need a
data format that can mirror this structure. In this section, we
discuss existing sparse data formats and how they compare
and contrast to our format.

This simplest of the sparse formats is the coordinate storage
format (COO). This format is composed of a list of edges,
described as a tuple of: the starting vertex, the ending vertex
and the weight. This format provides compression over a dense
matrix by only storing the nonzero elements. The Compressed
Sparse Row (CSR) and Compressed Sparse Column (CSC)
format provide additional compression over the COO format.
They do this by compressing all of the edges in the same row
(or column) into a pair of lists containing the column (or row)
element and the edge weight. While COO, CSC, and CSR
provide compression over dense storage, they do not allow
for blocking for locality. Thus, we cannot use these formats
for hierarchical storage of our graph.

Hierarchically Tiled Arrays (HTA) [6] are a set of C++
objects for storing dense arrays in a hierarchical fashion. The
goal of this project is to concisely describe parallelism using
these hierarchical objects. Similarly, FLASH [5] provides a
hierarchical representation for dense matrices. This API ab-
stracts away the complex indexing associated with hierarchical
matrices and allows the user to implement dense linear algebra
routines over matrices that are stored as blocks. Both of these
libraries provide an API for describing matrices hierarchically.
A user can optimize their matrix operations for their target
hardware by varying the depth of this hierarchy and by varying
the dimensions of the blocks at each level. However, both
formats target dense data, and we want to preserve sparsity at
every depth of the hierarchy.

The Recursive Sparse Blocks (RSB) [7] store sparse ma-

trices hierarchically. It does this by sub-dividing the matrix
in a quad-tree fashion. It continues to sub-divide all blocks
until each block only contains a small number of elements.
These blocks are then small enough to fit in the cache of the
target system. Their work imposes a specific partitioning of the
matrix. Additionally, it fixes the access pattern for SPMV to a
Z-Morton ordering. Our work differs in that the partitioning is
determined by user knowledge, and the access pattern is also
determined by the user.

The Optimized Sparse Kernel Interface (OSKI) [8] is a pro-
gram generation system for implementing high performance
SPMV kernels on a specialized data format. This specialized
format can be viewed as a sparse collection of dense blocks.
Their interface allows the user to embed domain knowledge
as hints that affect the block size of their format. Compressed
Sparse Block (CSB) [9] can be viewed as a dense collection of
sparse blocks. This format gives no preference over computing
on rows versus columns. In this way, one can consider it as a
blocked version of the COO format. Their library provides
efficient implementations of transposed and non-transposed
SPMV. Their existing format only provides one level of tiling,
whereas we want many levels of tiling. Both of these works
show that tuned kernels are necessary for the data format being
used. Our work leverages their ideas, to provide a hierarchical
sparse collection of sparse blocks.

Lastly, the Spatio-Temporal Interaction Network and Graph
Extensible Representation (STINGER) [10] is a graph library
and data format for performing analytics on time varying
graphs. They use a specialized data structure to accommo-
date frequent updates to the graph, and to facilitate parallel
operations over the graph. Their interface allows the user
to provide a mapping function between physical vertex ID
in the graph and their logical ID in memory. Our interface
also provides the user with the ability to define this mapping
function. This allows the user to provide structural information
to the constructor of our data format. In the following section
we describe our format.

III. PROPOSED MECHANISM

In this section, we describe our hierarchical sparse data
format and its constructor function. If the user provides our
framework with domain knowledge about the structure of the
graph, then our framework can construct both a sparse matrix
and dense vector in our format that preserves this structure in
memory.

b) Data format: The key component to our storage
scheme is the hierachical Recursive Matrix or Vector (RMV)
element. The graph is stored recursively by blocks inside this
container. The graph is represented at multiple granularities
(Figure 2). At the very top this block contains the entire graph
below it and at the very bottom the blocks contain pointers to
the weights of the edges or values of the vertices.

struct recursive_dense_vector{
type; size;
values; };

Fig. 2. In this figure, we show how the incidence matrix of the graph is
stored hierarchically using our format. At the depth d5, we have a view of
what the original incidence matrix. We store the graph hierarchically, so as
we move up this pyramid, the graph is coarsened. Each element in the levels
above d5 is a pointer to the elements in the level below it.

Fig. 3. This figure represents an instantiated Recursive Sparse Matrix. It
contains the shape of a sparse graph as a bit matrix and the corresponding
values stored as a dense list. Note that the bit matrix can be treated as an
integer, which can be used to select a kernel specialized to that specific shape.

struct recursive_sparse_matrix{
type; size;
bitmask_matrix;
values; };

In each Recursive Matrix or Vector container, there is a field
that determines if its elements point to containers at a finer
level of the graph, or if they point to the actual values. Next,
it contains the number of rows and columns of blocks that it
can access. Additionally, there is a bit matrix that describes the
pattern of the non-zero elements. Lastly, there is an array that
either containers pointers to the next level of blocks or values
if we are the final level. In Figure 3 we show an instantiation
of this object. We then show in Figure 4 a fully constructed
Recursive Sparse Matrix of height 2. The top level provides a
coarse view of the matrix, and each of its elements point to a
Recursive Sparse Matrix on the bottom level.

Fig. 4. We have a two level Recursive Sparse Matrix object. The top level
captures the shape of the bottom layer. Additionally, each of its elements
points to the Recursive Sparse Matrix objects on the bottom level.

c) Construction: The user provides the structural infor-
mation of the graph to our framework. In order to enable the
assembly of these RMV objects based on the user’s knowl-
edge, we provide a tree based descriptor. This tree captures the
recursive partitioning of the vertices in the graph as a nesting
of partitionings. The nodes of this tree are shape descriptors
and they are generated by a user provided get child function.

struct shape_desc{
depth; nnz; rows; cols;
void *user_data
void *get_child;
};

Each of these descriptors represents the shape of the graph
at its assigned depth. The first four parameters give the
coarse structure of the sub-graph being viewed. The user data
field allows the user to pass bookkeeping information to the
get child function during the formation of this tree.

desc_child = get_child(i,j, desc_parent)

Using these descriptors and functions, we can assemble a
RMV object according to a user defined partitioning. We have
used this tree based approach for assembling the Recursive
Matrix object from synthetic data, as well as, from COO
formatted sparse matrix data.

assemble_recursive_matrix(
recursive_sparse_matrix *head,
shape_desc *parent)

{
head->values = malloc(parent-> nnz)

for i,j in parent->rows,cols
if child = parent->get_child(i,j,parent)

!= NULL
mark_bit_mask(i,j, head)
assemble_recursive_matrix

(head->values[p++], child)
}

Fig. 5. Here we illustrate a blocked Sparse Matrix-Vector Multiply (spmv).
The output and input vector are stored as Recursive Dense Vectors with a depth
of 2. The top level of the vectors are 1 × 4 vectors of pointers, that point
to 1× 4 sub-vectors of scalar elements. The matrix is stored as a Recursive
Sparse Matrix, also with a depth of 2. The top level is a 4× 4 sparse matrix,
where each non-zero points to a 4× 4 sparse matrix of scalars.

In the pseudo code snippet listed above, we capture the
essence of how a Recursive Matrix is constructed recursively
from the shape tree. In the snippet we show that at each
descent into the recursive matrix we simultaneously descend
into the user provided shape tree that describes the graph.
The construction of the Recursive Vector follows a similar
approach based on these tree shape descriptors.

d) Computation: Computing a Sparse Matrix-Vector
Multiply (spmv) using the RMV object is equivalent to
performing a blocked Matrix-Vector Multiply. Functionally, it
entails a recursively blocked spmv, that descends down the
matrix and vector objects until it reaches the actual data values.
This is illustrated in Figure 5. Note that the sub-vectors are
reused across many elements in the matrix, so they are kept
in the cache. The amount of reuse is dependent on how the
user partitioned the vertices of the graph.

An additional feature of our structures is the ability to
dispatch to specialized functions. In each container for the
sparse matrices, there is a bit matrix which determines the
shape at that level. This matrix can be treated as a single
integral type and used to dispatch the children to a specialized
version of that function. The specialized function can be
optimized to include the indirect indexing directly in the code.

spmv_dispatch(y, mat, x){
switch(mat->bit_matrix)
..
case 65:

spmv_65(y,mat->values, x)
}

The corresponding spmv 65 function can be fully unrolled
and optimized to avoid indirect address computation. As long
as the size of the instruction cache permits, we can specialize
to all potential matrix shapes for a given block size.

e) Data Structure Analysis:

srmv(n) = stype(n) + ssize(n) + snnz(n) + smask(n)+
sptr mask + sptr vals

(1)
Where stype is the block type, ssize are the dimensions of

the block, snnz is the number of non zeros in this block, smask

0

10

20

30

40

50

60

70

80

0%

1%

2%

3%

4%

5%

6%

7%

2 4 8 16 32 64 128 256 512 1024 2048

Bytes per Non-Zero

Block Size

Minimum Density to Justify Bit Matrix and Expected Bytes per Non-Zero
Density vs. Block Size

Range of Bytes per Non-Zero

Density (%) for Bit Matrix

Fig. 6. In this analysis, we determine the minimum block density needed
to justify the use of a bit matrix over a COO style list for a range of block
sizes. If the user can partition their graph into blocks that maintain these
densities, then the graph will reap the benefits of our storage mechanism.
On the secondary axis we show the possible range of overhead of the RMV
structure, measured in Bytes per Non-Zero, for each given block size. The
denser the block, the lower the overhead.

is the actual bit mask matrix, and sptr mask and sptr vals are the
bit mask and value pointers, respectively.

These blocks only store a small local sub-graph, so the size
of the data types used can be minimized to the number of bits
needed to encode a block of that size. We can represent these
sizes s as functions of n, where n represents the size of an
n×n block that we would like to store in our RMV Structure.
We can replace the size s terms with the following functions:

stype(n) = 8b
ssize(n) = 2log2(n)
snnz(n) = 2log2(n)
smask(n) = n2

sptr mask(n) = 64b
sptr vals(n) = 64b

(2)

This overhead formula is only for a single block. If we
assemble a graph in a hierarchical fashion using blocks of
size b (fixed size blocks are not a requirement of our structure),
then our overhead becomes:

s(n, b) =
1− 1

rk

1− 1
r

srmv(b) (3)

Where k = logb n, r = db2 and d is the average density of
the graph in each block.

If we make n arbitrarily large, then smask(n) becomes
the dominant factor. If we store a large graph as a single
block in our storage scheme, then the overhead would be
unnecessarily large compared to Coordinate Storage (COO).
However, our scheme is designed to store a scale-free graph
hierarchically such that the density of the leaves is greater

than the entire graph. Thus, if the density of the blocks is
sufficiently large, then this overhead is amortized over many
elements. Otherwise, a COO list should be used for that block,
a feature that our format allows. Thus, we need to balance the
size of our blocks with the density of the sub-graph that they
will store.

Achieving this desired density for larger block sizes may
not be practical for real world scale-free graphs. Fortunately,
we do not need a high density of the overall graph, only high
densities in tightly clustered sub-graphs. Thus, the question
becomes: given a sub-graph of size n, what minimum density
is needed to overcome the overhead of our storage format,
RMV, compared to COO? In Figure 6 we compare necessary
density to break even in overhead for a given block size. This
is computed using by solving for density d in mask(n) =
coo(n)nnz, where nnz = dn2. For a range of block sizes,
this plot shows what density is needed to justify the use of
the bit matrix over COO inside the RMV structure. In that
plot, we also calculate the range of the overhead of our RMV
mechanism for each block size.

IV. EXPERIMENTAL SETUP AND ANALYSIS

In this section, we evaluate the performance of our data
format for synthetic scale-free graphs. We want to show that
we can achieve reasonable spmv performance for a single
threaded, scalar, and un-optimized implementation of our
framework. Additionally, we show that we achieve competitive
performance with the state of the art. We chose spmv as a
proxy for graph operations for the following reasons: First,
many graph operations can be represented in terms of itera-
tive spmv-like operations. Second, this operation is typically
expertly tuned, so it sets a high bar for performance.

Synthetic Dataset: For our datasets, we generate synthetic
Discrete Kronecker Graphs [11] of various sizes. We chose
these graphs because they approximate scale-free graphs.
Using Kronecker graphs we can control the sparsity, number
of non-zeros and graph size in a predictable fashion. The
construction of the Kronecker Graphs used in our experiments
is as follows:

We start with an initiator matrix Bi, which in our case is
the arrowhead pattern.

B1 =

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

 (4)

We construct larger Kronecker Graphs Bi for i > 1 using
the Kronecker Tensor ⊗ in this formula Bi = B1 ⊗ Bi−1.
The term on the left-hand side describes the coarse structure
of the matrix, where the term on the right-hand side describes
the fine grain structure. For our arrowhead initiator B1, we
can visualize this matrix as:

Bi+1 =

Bi Bi Bi Bi

Bi Bi 0 0
Bi 0 Bi 0
Bi 0 0 Bi

 (5)

Density & Overhead
Untuned Scalar SPMV Recursive Matrix Vector
Performance [Gflop/s]

Xeon E5-2667v3

Core-i5 5200U

Graph Density

RMV Overhead

Problem Size [log10 𝑛𝑛𝑧]

Fig. 7. On the primary y-axis we measure the performance of an untuned
scalar spmv on our RMV data structure for graph sizes ranging from 10 to
108 non-zero edges. For the problems larger than 106 the graph data exceeds
the size of the caches on both systems, with the largest graph containing
800MB of graph data. The untuned scalar implementation achieves between
10% to 40% of the target systems’ double precision floating point peak
performance for synthetic data. On the secondary axis, we compare the graph’s
density relative to the overhead imposed by our data structure as the problem
size grows. For comparison the overhead for COO is 66%.

While our format does not require the graph to be a
Kronecker Graph, using it allows us to quickly compute the
number of non-zeroes (or edges), the number of vertices
and the density. We can then relate these features to the
performance of our implementation.

nnz(Bi) = 10i

num verts(Bi) = 4i

density(Bi) = nnz(Bi)
num verts(Bi)2

= (25)
i

(6)

We selected these graphs because they represent the ideal
case for our data format, because we can base our partitioning
on the mathematical representation of the Kronecker Graph.
However, our data format is not limited only to Kronecker
Graphs. It can store arbitrary sparse graphs, but we only expect
to see performance benefits if the user can map the structure
of their graph to our Recursive Matrix data structure.

Test Bench: Our target systems include: an Intel Core
i5-5200U running at 2.20 GHz with a memory bandwidth of
25.6 GB/s and an Intel Xeon E5-2667 v3 running at 3.2 GHz
with 68 GB/s of memory bandwidth. The theoretical peak
spmv performance on these machines are 6.4 GFLOP/s and
12.75 GFLOP/s respectively. This assumes that the vectors are
resident in the cache and that for every 8B consumed, 2 FLOPs
are performed.

0

1

2

3

4

5

6

7

3 4 5 6 7 8

Tuned SIMD SPMV Comparison (Intel E5-2667 v3)
Performance [Gflop/s]

MKL Coordinate

Recursive Sparse Blocks

Compressed Sparse Blocks

Recursive Matrix Vector

Problem Size [log10 𝑛𝑛𝑧]

Fig. 8. In this experiment, we compare the performance of a tuned SIMD
spmv implementation on our RMV data structure against state of the art
implementations on synthetic scale-free data. This data set exceeds the cache
and is 800MB, excluding overhead. Our RMV implementation outperforms
the other implementations until 107 non-zero elements. We suspect that by
rearranging our data layout we can make more effective use of the large
number of channels on this system.

A. Performance Analysis

In order to demonstrate the effectiveness of our data struc-
ture for matrix-vector like operations on scale-free graphs, we
evaluated two variants of our framework: a scalar and Single
Instruction Multiple Data (SIMD) implementation.

The goal of our scalar experiment (Figure 7) is to show the
performance of a minimally tuned scalar spmv implementa-
tion using our RMV data structure over synthetic scale-free
data. We do this to establish a baseline of what is achievable
by using our data-structure and we relate this to the density
of the graph and the overhead of our format. What we see in
Figure 7 is that as the problem size grows larger, the density
of the synthetic scale free graph decreases, but the fraction of
overhead introduced by our structure converges to 25%. For
comparison this value is 66% for COO. We also see that for
our untuned scalar implementation, the RMV spmv sustains
10% and 40% peak floating point performance on the Xeon
E5 and Core i5, respectively.

In Figure 8 we compare an optimized version of our
data-structure and spmv framework against state of the art
implementations. We use SIMD short vector instructions to
compute the inner-most 4 × 4 blocks of the spmv. These
kernels specialize to the shape of sub-graph, which dispatch on
the bit-matrix and only compute on the non-zero elements for
that particular mask. Additionally, we chose block sizes that
fit the sub-graphs into the various caches. When constructing
the graph, we lay out the elements in a contiguous order that
matches how they will be computed (this is done by passing a
user defined malloc routine during the RMV construction).

Lastly, we use prefetching to load the next sub-graph in
its respective cache. The application of these optimizations
parallel the implementation of a high performance dense linear
algebra routine.

For a single thread, our implementation outperforms the
state of the art for synthetic scale-free graphs up to the size
of 107 non-zero edges. We suspect that for larger sizes our
blocking dimensions are not optimal. Furthermore, we suspect
that for those larger sizes our data layout does not efficiently
use the memory subsystem. This could be addressed by using
a layout that maximizes memory level parallelism. We leave
these two adjustments for future work.

V. SUMMARY

In this paper, we provide an API for a sparse and hierar-
chical data format for storing scale-free graphs. Additionally,
we provide an API that allows the domain expert to pass the
structural information of the graph to our framework. This
structural information is represented as a vertex partitioning
stored as a tree, and it determines the shape of our Recursive
Matrix Vector (RMV) objects.

For graph problems that generate their own data, or when
the topology of the graph is known, this allows the data
structure to be constructed in a way that fits both the graph and
the memory hierarchy. Thus, we can map real-world scale-free
graphs to modern computer architectures. In future work, we
will investigate the optimal construction of our data-structure
from real-world graphs. Particularly, we will investigate how
to automatically map the graph to the memory hierarchy of
the target system.

ACKNOWLEDGMENT

This work was sponsored by the DARPA PERFECT pro-
gram under agreement HR0011-13-2-0007. The content, views
and conclusions presented in this document do not necessarily
reflect the position or the policy of DARPA or the U.S.
Government. No official endorsement should be inferred.

REFERENCES

[1] A.-L. Barabsi, R. Albert, and H. Jeong, “Mean-field theory for
scale-free random networks,” Physica A: Statistical Mechanics and its
Applications, vol. 272, no. 12, pp. 173 – 187, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0378437199002915

[2] ——, “Scale-free characteristics of random networks: the topology
of the world-wide web,” Physica A: Statistical Mechanics and its
Applications, vol. 281, no. 14, pp. 69 – 77, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0378437100000182

[3] C. Edwards, P. Geng, A. Patra, and R. van de Geijn, “Parallel matrix
distributions: have we been doing it all wrong?” Department of Com-
puter Sciences, The University of Texas at Austin, Tech. Rep. TR-95-40,
1995.

[4] P. Bientinesi, V. Eijkhout, K. Kim, J. Kurtz, and R. van de Geijn, “Sparse
direct factorizations through unassembled hyper-matrices,” Computer
Methods in Applied Mechanics and Engineering, vol. 199, pp. 430–438,
2010.

[5] T. M. Low and R. van de Geijn, “An API for manipulating matrices
stored by blocks,” Department of Computer Sciences, The University of
Texas at Austin, Tech. Rep. TR-2004-15, May 2004.

[6] B. B. Fraguela, J. Guo, G. Bikshandi, M. J. Garzarán, G. Almási,
J. Moreira, and D. Padua, “The hierarchically tiled arrays programming
approach,” in Proceedings of the 7th Workshop on Workshop on
Languages, Compilers, and Run-time Support for Scalable Systems,
ser. LCR ’04. New York, NY, USA: ACM, 2004, pp. 1–12. [Online].
Available: http://doi.acm.org/10.1145/1066650.1066657

[7] M. Martone, S. Tucci, M. Paprzycki, and M. Ganzha, “Utilizing recur-
sive storage in sparse matrix-vector multiplication - preliminary consid-
erations,” in Proceedings of the ISCA 25th International Conference on
Computers and Their Applications (CATA. ISCA, 2010, pp. 300–305.

[8] R. Vuduc, J. W. Demmel, and K. A. Yelick, “Oski: A library
of automatically tuned sparse matrix kernels,” Journal of Physics:
Conference Series, vol. 16, no. 1, p. 521, 2005. [Online]. Available:
http://stacks.iop.org/1742-6596/16/i=1/a=071

[9] A. Bulu, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in IN SPAA, 2009, pp. 233–244.

[10] D. Ediger, R. McColl, E. J. Riedy, and D. A. Bader, “STINGER: high
performance data structure for streaming graphs,” in IEEE Conference
on High Performance Extreme Computing, HPEC 2012, Waltham, MA,
USA, September 10-12, 2012, 2012, pp. 1–5. [Online]. Available:
http://dx.doi.org/10.1109/HPEC.2012.6408680

[11] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and
Z. Ghahramani, “Kronecker graphs: An approach to modeling
networks,” J. Mach. Learn. Res., vol. 11, pp. 985–1042, March 2010.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1756006.1756039

