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Introduction

Developing numerical libraries that achieve highest perfor-
mance on modern computer architectures became an extremely
difficult task due to the increasingly complicated microarchi-
tectures, deep cache hierarchies, and different forms of on-
chip parallelism, such as multiple processor cores and SIMD
short vector instruction sets.

The difficulty of library development led to interest in au-
tomated tools that simplify the development of high-performance
libraries, without sacrificing performance. Program generator
Spiral [2] is an example of such tool for the domain of lin-
ear transforms, such as the discrete Fourier transform (DFT),
FIR filters, and others. Spiral automatically generates theop-
timized and platform-adapted implementation given only the
transforms specification (e.g.DFT1024) and a high-level de-
scription of the recursive divide-and-conquer algorithm in the
domain-specific language called SPL (Signal Processing Lan-
guage). Spiral performs optimizations such as vectorization
and parallelization using rewriting on the high-level of ab-
straction provided by SPL, and also lower-level representa-
tions.

To exploit the potential offered by the development au-
tomation tools, Intel Integrated Performance Primitives (IPP)
library, which provides a wide number of optimized linear
transform functions, starting with version 6.0, will include a
special domain for the functions automatically generated by
Spiral.

To date Spiral was restricted to generating code for trans-
forms of fixed size, known at generation time. In this paper
we overview our latest research results [3] that enable gener-
ating full general size libraries, for which the transform size
is only known at runtime.

Library Generation

The goal of library generation is to produce a highly opti-
mized transform implementation starting given only a trans-
form and high-level specifications of divide-and-conquer al-
gorithms (calledbreakdown rules) that the library should use.
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For example, a typical input to the library generator is

Transform:DFTn,

Algorithms: DFTkm → (DFTk ⊗Im) diag(Ωk,m)

(Ik ⊗ DFTm)Lkm
k ,

DFT2 →
[

1 1

1 −1

]

,

Vectorization: 2-way SSE

Multithreading: yes

Above we showed the well-known divide-and-conquer Cooley-
Tukey fast Fourier transform (FFT) algorithm represented in
SPL, which is defined in [2], however, the precise meaning of
the SPL symbols and operators is not relevant here.

The output is a generated library that is

• for general input size;

• vectorized using the available SIMD vector instruction
set;

• multithreaded with a fixed or variable number of threads;

• performance competitive with the best existing hand-
written libraries.

Generating code for a fixed size transform is a fundamen-
tally different problem from library generation as explained
above. Fixed size code generation in Spiral works by decom-
posing the original transform at generation time into smaller
transforms, until the base cases are reached. The full recur-
sion tree, calledruletree, is known at generation time, and
is first translated into SPL, then intermediate code represen-
tation (or a DAG), and finally into a program that computes
the transform Generating a general size library requires com-
piling each breakdown rules into a recursive function, so that
it can be applied dynamically at runtime. Thus a ruletree is
never actually constructed at generation time.

The library generation process consists of the several steps
explained next.

Compute the set of needed recursive functions. In many
cases, including the Cooley-Tukey FFT, the larger transforms
are decomposed into smaller transforms of the same type, and
it seems that only a single recursive function is sufficient.
However, in order to achieve the best possible performance
different steps inside the algorithm must be merged [1], which
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Figure 1: Performance of automatically generated libraries compared to hand-written libraries (FFTW uses generated code
for small fixed size transforms). Double precision, using SSE2 and up to 2 threads. Platform: dual-core 3 GHz Intel Xeon
5160 processor with 4 MB of L2 cache running Linux. Generatedlibraries are in C++ and are compiled with Intel C/C++
Compiler 10.1.

leads to additional function with different interface. Imple-
mentation of these functions might require additional func-
tions, and so forth.

Perform vectorization and parallelization. This step is
done using rewriting rules applied at the SPL and lower level
representations.

Hot/cold parameter partitioning. It is common for lin-
ear transform libraries to perform a number of constant pre-
computations and other initialization tasks, such as memory
allocation, as soon as the transform size, and other parame-
ters are known. The goal of this step is to determine which
parameters arecold, i.e., must be provided at the initialization
stage, and which parameters can be provided later.

Final code generation. The last step is to implement each
of the previously derived functions in the target language.
Each function will need at least one recursive general size
implementation (that calls other functions), at least one base
case to terminate the recursion, and the initialization code.
We currently target C++, but in [3] also a Java backend is
reported.

Performance

The performance of four example libraries, generated using
Spiral, are shown in Fig. 1 and compared to FFTW and the

Intel IPP. We observe that together with complete automation,
generated libraries often achieve the highest performance. The
performance of generated libraries is comparable to Intel IPP
and FFTW, for the popular functionality, such as the DFT and
the FIR filters. However, the less popular transforms such as
the DCTs, are not as well optimized as the DFT in Intel IPP
and FFTW, and consequently the generated libraries, which
enjoy completely automated development and optimization,
are faster.
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ing for signal transforms. InProc. PLDI, pages 315–326,
2005.
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