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Abstract—Memory layout transformations via data reorgani-
zation are very common operations, which occur as a part of the
computation or as a performance optimization in data-intensive
applications. These operations require inefficient memory access
patterns and roundtrip data movement through the memory
hierarchy, failing to utilize the performance and energy-efficiency
potentials of the memory subsystem. This paper proposes a high-
bandwidth and energy-efficient hardware accelerated memory
layout transform (HAMLeT) system integrated within a 3D-
stacked DRAM. HAMLeT uses a low-overhead hardware that
exploits the existing infrastructure in the logic layer of 3D-
stacked DRAMs, and does not require any changes to the
DRAM layers, yet it can fully exploit the locality and parallelism
within the stack by implementing efficient layout transform
algorithms. We analyze matrix layout transform operations (such
as matrix transpose, matrix blocking and 3D matrix rotation)
and demonstrate that HAMLeT can achieve close to peak system
utilization, offering up to an order of magnitude performance
improvement compared to the CPU and GPU memory subsystems
which does not employ HAMLeT.

I. INTRODUCTION

Main memory has been a major bottleneck in achieving
high performance and energy efficiency for various computing
systems. This problem, also known as the memory wall, is
exacerbated by multiple cores and on-chip accelerators sharing
the main memory and demanding more memory bandwidth.
3D die stacking is an emerging technology that addresses the
memory wall problem by coupling multiple layers of DRAM
with the processing elements via high-bandwidth, low-latency
and very dense vertical interconnects, i.e. TSVs (through
silicon via). However, in practice, the offered high performance
and energy efficiency potentials is only achievable via the
efficient use of the main memory.

Exploiting the data locality and the abundant parallelism
provided by multiple banks, ranks (and layers) is the key
for efficiently utilizing the DRAM based main memories.
However, several data-intensive applications fail to utilize the
available locality and parallelism due to the inefficient memory
access patterns and the disorganized data placement in the
DRAM. This leads to excessive DRAM row buffer misses
and uneven distribution of the requests to the banks, ranks
or layers which yield very low bandwidth utilization and incur
significant energy overhead. Existing solutions such as mem-
ory access scheduling [1] or compiler optimizations [2], [3]
provide limited improvements. Memory layout transformation
via data reorganization in the memory aims the inefficient
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memory access pattern and the disorganized data placement
issues at their origin. Yet, transforming the memory layout
suffers from the high latency of the roundtrip data movement
from the memory hierarchy, to the processor and back to
the main memory. Also the memory layout transformation is
associated with a bookkeeping cost of updating the address
mapping tables [4].

In this paper, we present HAMLeT, a hardware accel-
erated memory layout transform framework that efficiently
reorganizes the data within the memory by exploiting the 3D-
stacked DRAM technology. HAMLeT uses high-bandwidth,
low-latency and dense TSVs, and the customized logic layer
underneath the DRAM to reorganize the data in the memory
by avoiding the latency and the energy overhead of the
roundtrip data movement through the memory hierarchy and
the processor. HAMLeT proposes a lightweight and low-power
hardware in the logic layer to address the thermal issues.
It introduces very simple modifications to the existing 3D-
stacked DRAM systems such as the hybrid memory cube
(HMC) [5]–it mostly uses the already existing infrastructure
in the logic layer and does not require any changes to the
DRAM layers. By using the SRAM based scratchpad memory
blocks and the existing interconnection in the logic layer, it
implements efficient algorithms to perform otherwise costly
data reorganization schemes. For the reorganization schemes
that we consider, HAMLeT handles the address remapping in
the hardware, transparent to the processor. Our work makes
the following contributions:
• To our knowledge, HAMLeT is the first work that pro-

poses a high-performance and energy-efficient memory
layout transformation accelerator integrated within a 3D-
stacked DRAM.

• HAMLeT uses a lightweight hardware implementation
that exploits existing infrastructure in the logic layer, and
does not require any changes to the DRAM layers, yet
it can fully exploit the locality and parallelism within
the 3D-stacked DRAM via efficient layout transform
algorithms.

• We evaluate the performance and energy/power consump-
tion of HAMLeT for the data reorganizations such as:
Matrix transpose, matrix blocking, and data cube rotation.

• For the analyzed reorganization schemes, HAMLeT han-
dles the address remapping in the hardware, transparent
to the software stack, and does not incur any bookkeeping
overhead of the page table updates.

• We compare HAMLeT with CPU and GPU memory sub-
systems, which do not employ hardware accelerated data
reorganization, and demonstrate up to 14x performance
and 4x bandwidth utilization difference.
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Fig. 1. Organization of an off-chip DRAM module.

II. DRAM OPERATION AND 3D-STACKING

A. DRAM Operation

As shown in Figure 1, modern DRAM modules are divided
hierarchically into ranks, chips, banks, rows and columns. Set
of DRAM chips which are accessed in parallel to form the
whole DRAM word constitute a rank. Each DRAM chip has
multiple internal banks that share the I/O pins. A bank within a
DRAM chip has a row buffer which is a fast buffer holding the
lastly accessed row (page) in the bank. If the accessed bank
and page pair are already active, i.e. the referenced page is
already in the row buffer, then a row buffer hit occurs reducing
the access latency considerably. On the other hand, when a
different page in the active bank is accessed, a row buffer miss
occurs. In this case, the DRAM array is precharged and the
newly referenced page is activated in the row buffer, increasing
the access latency and energy consumption. Exploiting the
spatial locality in the row buffer is the key to achieve high
bandwidth utilization and energy efficiency.

In addition to the row buffer locality, bank/rank level
parallelism has a significant impact on the DRAM band-
width and energy utilization. Given that different banks can
operate independently, one can overlap the latencies of the
row precharge and activate operations with data transfer on
different banks/ranks. However, frequently precharging and
activating pages in different banks increases the power and
total energy consumption.

B. 3D-stacked DRAM

3D-stacked DRAM is an emerging technology where mul-
tiple DRAM dies and a logic layer are stacked on top and
connected by TSVs (through silicon via) [5], [6], [7], [8].
TSVs allow low latency and high bandwidth communication
within the stack, eliminating I/O pin count concerns. Fine-grain
rank-level stacking, which allows individual memory banks
to be stacked in 3D, enables fully utilizing the internal TSV
bandwidth [9], [5]. As shown in Figure 2(a), fine-grain rank-
level stacked 3D-DRAM consists of multiple DRAM layers
where each layer has multiple DRAM banks, and each bank
has its own TSV bus. Vertically stacked banks share a TSV
bus and form a vertical rank (or sometimes referred as vault
[5]). Each vault can operate independently.

The internal operation and the structure of the 3D-stacked
DRAM banks are very similar to the regular DRAMs (see
Figure 1) except some of the peripheral circuitry is moved
down to the logic layer which enables achieving much better
timings [9]. As shown in Figure 2(b), the logic layer also
includes a memory controller, a crossbar switch, vault and
link controllers. The memory controller schedules the DRAM
commands and aims to maximize the DRAM utilization while

obeying the timing constraints. The crossbar switch routes the
data between different vaults and I/O links. Finally, the vault
and the link controllers simply transfer data to the DRAM
layers and to the off-chip I/O pins respectively. Typically, these
native control units do not fully occupy the logic layer and
leave a real estate for a custom logic implementation [10].
However, the thermal issues limit the complexity of the custom
logic.

III. HAMLET ARCHITECTURE

We propose the HAMLeT architecture shown in Figure 2(c)
for efficient reorganization of the data layout in the mem-
ory. The processor offloads the memory layout transform to
the HAMLeT, and the data reorganization is handled in the
memory by avoiding the latency and energy overhead of
the roundtrip data movement through the memory hierarchy.
Overall, memory layout transform operations can be sum-
marized as: reading chunks of data to the logic layer, local
reorganization of the data in the logic layer and finally writing
chunks of data back to the DRAM layers. This operation is
repeated to transform the memory layout of big datasets.

The HAMLeT architecture shown in Figure 2(c) features
three main components to handle the overall layout transform
operation: (i) local fast buffers (ii) interconnection between
these buffers and (iii) a control unit. In fact, existing 3D-
stacked DRAM systems, such as HMC [5], [10], already
provide the interconnection infrastructure in the logic layer.
HAMLeT makes use of the crossbar switch in the logic layer–
it only introduces SRAM blocks as the fast local buffer and a
control unit that orchestrates the data movement between the
DRAM layers and the SRAM blocks.

HAMLeT features dual-bank SRAM blocks per vault (i.e.
per independent TSV bus) which are used for double-buffering
to ensure continuous flow of data. It transfers data chunks
between the DRAM layers and SRAM blocks in parallel by
using independent vaults and also time-multiplex each TSV
bus shared by multiple layers to maximize the parallelism. It
always transfers consecutive row buffer size chunks of data
to/from DRAM layers to minimize the number of row buffer
misses. Hence, the SRAM blocks are sized according to the
configuration of the 3D-stacked DRAM such that they can
hold multiple DRAM rows. SRAM blocks do not incur any
penalties depending on the memory access patterns, which
enables efficient local data reorganization. Furthermore, the
crossbar switch provides the substrate for exchanging data
chunks between the SRAM blocks. Finally, the control unit
accepts the layout transform commands with a few parameters
(e.g. size, source, destination etc.)—it does not require a full-
fledged processor. Interestingly, such an architecture which
consists of SRAM blocks connected via a switch network can
execute wide variety of data reorganization schemes [11].

IV. LAYOUT TRANSFORM OPERATIONS

Several data-intensive applications such as linear al-
gebra computations (GEMM, GEMV), spectral methods
(single/multi-dimensional FFTs), signal processing (SAR
imaging) require data shuffle operations as part of their com-
putation (e.g. matrix transpose, 3D-matrix rotation [12], [13])
or can benefit from memory layout transformations (e.g. row-
major to column-major layout transform, tiled data layout [12],
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Fig. 2. 3D-stacked DRAM architectural overview and the HAMLeT architecture in the logic layer.

[14], [15]). Such operations are costly to perform and generally
avoided since: (i) inefficient memory access patterns fail to
utilize the locality and parallelism in the memory hierarchy
which yields low bandwidth and high energy utilization, and
(ii) roundtrip data movement through the memory hierarchy
suffers from a high latency and energy overhead. In this
work we analyze HAMLeT for the following layout transform
operations: matrix transpose, matrix blocking and 3D-matrix
rotation.

A. Matrix Transpose

Matrix transposition can be a required data shuffle opera-
tion as a part of the computation (e.g. 2D-FFT) or it can be
used to transform the memory layout of a matrix for higher
performance. Matrix transposition is generally avoided due to
its cost, yet HAMLeT uses an efficient matrix transposition
algorithm which exploits the locality and parallelism within
the 3D-stacked DRAM.
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Fig. 3. Logical 2D array view of the matrices (nr × nc). Arrows represent
the linear data placement in the memory.

Matrix transpose simply takes a row-major matrix (Fig-
ure 3(a)) and transforms it into a column-major matrix (Fig-
ure 3(b)), or vice versa. Conventionally this operation is per-
formed by reading rows from the source and writing them as
columns to the destination. There exists optimized algorithms
that exploit blocking and parallelism [16], [14]. HAMLeT uses
a blocked transpose algorithm as follows; (i) assuming the
DRAM row buffer holds r element pages where r < nr, it
transfers an r × r element tile by reading r DRAM pages to
the logic layer and writes them into the SRAM blocks. (ii)
The r × r element tile is locally transposed by exchanging
data chunks among SRAM blocks via the crossbar switch.
(iii) It can write the locally transformed data back to DRAM
layers as whole DRAM pages (i.e. r elements) since it holds r
columns. This scheme requires the SRAM buffers to hold r2
elements. This operation is repeated until the whole dataset is
transposed. HAMLeT efficiently utilizes the DRAM via three
main components: (i) It always transfers complete DRAM
pages which minimizes the row buffer misses and maximizes

the data locality utilization. (ii) Writing/reading data chunks
to/from SRAM blocks in parallel fully exploits the parallelism
of independent per-vault TSV buses (inter-vault parallelism).
(iii) It maximizes the bandwidth utilization of a TSV bus via
fine-grain round-robin scheduling of the accesses to the layers
within a vault (intra-vault parallelism).

B. Matrix Blocking

Often times blocked data layouts provide a middle ground
in between the canonical row/column major layouts and offer
significant improvements [17], [12], [15]. Transforming a
row/column major layout to a blocked layout or re-sizing the
tiles can be a crucial feature to utilize these improvements.

There exists various forms of blocked layouts, such as
z-morton or various space filling curves, but Figure 3(c)
demonstrates a case where elements within the blocks and
the blocks themselves are ordered in row major. We select
the block size to match the r-element DRAM page via k × k
element tiles where k =

√
r. This ensures the transfer of the

whole pages to minimize the number of DRAM row buffer
misses. Further it minimizes the local SRAM requirement.
In performing the matrix blocking, HAMLeT reads entire r-
element pages. It needs to buffer at least k pages so that it can
form k×k tiles locally. It writes the locally blocked data back
to the DRAM layers as k×k tiles where each tile is mapped to
a page. Transferring whole DRAM pages, i.e. tiles, throughout
the transformation minimizes the row buffer misses. Similarly,
multiple SRAM blocks utilize the inter/intra vault parallelism.
This scheme requires SRAM buffers of size k × r = r3/2

elements.

C. Cube Rotation

Some scientific applications such as 3D-FFTs, molecular
dynamics simulation, or tensor contraction have multidimen-
sional datasets which require data shuffle and layout transform
operations [12], [13].
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Fig. 4. Logical 3D view of the 3D matrices (nx × ny × nz).



A multidimensional dataset, such as a 3D matrix (cube),
can be mapped into the linear memory address space in various
ways. x-y-z, z-x-y, and y-x-z ordered layouts are demonstrated
in Figure 4. Assuming the x-y-z ordered layout in Figure 4(a),
transferring elements in x-direction leads to sequential ac-
cesses, whereas y and z direction result in inefficient strided
access patterns. For a given layout, we will call the dimension
that generates sequential accesses as the fast dimension, and
the other dimensions as slow dimensions.

In performing the cube rotation, for example from x-y-z
order to z-x-y order, HAMLeT reads entire r-element DRAM
pages in the fast dimension (x) to efficiently utilize the row
buffer locality. It buffers r pages in the z direction, i.e. the
fast dimension of the target layout, so that in the write-back
stage it can write entire DRAM pages in the fast dimension
of the target layout. Similar to the other transform examples,
it uses the fast SRAM blocks and the crossbar switch for
local reorganization and distribution of data chunks within the
stack exploiting the parallelism and locality. It needs to buffer
r × r elements from the data plane constructed by the fast
dimensions of the source and the target layouts (x-z plane in
this case), which requires r2-element size SRAM buffers.

V. ADDRESS REMAPPING

A memory layout transformation changes the mapping
between the logical addresses and the actual physical locations
of the data in the memory. Hence the address mapping needs
to be updated according to the performed memory layout
transformation. Conventionally, for a general purpose system
that employs virtual memory, changing the address mapping
requires TLB invalidations and updating the page table entries.
Changing the OS page size or keeping a small mapping table
in the memory controller are proposed to alleviate this problem
[4], [18]. However these solutions offer limited scalability and
cannot completely eliminate the overheads.

HAMLeT employs a pure hardware based address remap-
ping mechanism to overcome this problem such that no soft-
ware/OS involvement is necessary after the memory layout
transform to update the address mapping. We make the ob-
servation that a memory layout transform can be represented
by a data permutation operation. For the certain family of
the data permutations the required address remapping can be
expressed via simple bit shuffle operations. HAMLeT uses a
reconfigurable bit shuffle unit which can handle the address
remappings for the memory layout transform examples pre-
sented in this work. Accesses are forwarded to their new
locations via the address remapping unit in the hardware
transparent to the OS or software stack. Address remapping
examples for the matrix transpose and matrix blocking are
shown in Figure 5. Although the address remapping through bit
shuffle operations can capture the matrix layout transforms, it
may not be applicable to an arbitrary layout transform. Formal
analysis and the generalization of the address remapping via
bit shuffles is beyond the scope of this paper and we defer it
as a future work.

VI. EVALUATION

In this section we present the performance and
power/energy evaluation of the HAMLeT for the selected
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TABLE I. 3D-STACKED DRAM CONFIGURATIONS. (32NM TECH.)

Name Configuration tCL-tRCD-tRP-tRAS-tTSV Peak BW
Nstack/Nbank/NTSV/Page (ns) (GB/s)

L4-B8-T512 4 / 8 / 512 / 8 kb 12.2-7.89-16.8-22.9-0.68 337.2
L6-B16-T512 6 / 16 / 512 / 8 kb 10.7-7.18-6.10-10.8-1.22 732.0
L4-B16-T512 4 / 16 / 512 / 8 kb 10.7-7.22-8.37-13.8-0.68 809.8
L4-B16-T256 4 / 16 / 256 / 8 kb 10.7-7.22-8.37-13.8-0.68 466.7
L4-B8-T256 4 / 8 / 256 / 8 kb 12.2-7.89-16.8-22.9-0.68 201.2

memory layout transformations. We also provide a perfor-
mance and bandwidth utilization comparison of the 3D-stacked
DRAM based HAMLeT with CPU and GPU based memory
layout transformations.
A. Layout Transform Using HAMLeT

We use a modified version of the CACTI-3DD [9], that
includes more detailed parameters from the published work [7],
[10]. We generate the low level timing and energy parameters,
then input them to our custom power/performance simulator
to get the estimations for the memory access pattern of a par-
ticular layout transform. In our analysis, we target a variety of
3D-stacked DRAM configurations which are shown in Table I.
These configurations are within the range of typical 3D-stacked
DRAM systems where the theoretical peak bandwidth within
the stack is ranging from 200 GB/s to 800 GB/s [8], [5] and
the area efficiency is larger than 40% [7].

Figure 6 presents the performance, bandwidth utilization,
power/energy consumption results for the HAMLeT in per-
forming matrix transpose, matrix blocking and cube rota-
tion examples. HAMLeT efficiently exploits the 3D-stacked
DRAM to reorganize the memory layout such that (i) it utilizes
the DRAM row buffer by writing/reading entire pages to/from
DRAM layers and minimizes the row buffer misses, (ii) it fully
exploits the parallelism among the independent TSV buses
by writing/reading data chunks to/from local per-vault SRAM
blocks in parallel, (iii) it maximizes the bandwidth utilization
of a TSV bus via round-robin scheduling of the accesses to
the layers within a vault. Consequently, for all of the layout
transform operations, HAMLeT can achieve close to the peak
bandwidth utilization, high performance and low power/energy
consumption for a variety of memory configurations. Next, to
put the numbers in Figure 6 into perspective, we compare the
results to CPU and GPU based layout transformations.

B. Comparison Against CPU and GPU

For the comparison against CPU and GPU, we use opti-
mized reference implementations on each platform. We use a



88 

90 

92 

94 

96 

98 

100 

0 

0.5 

1 

1.5 

2 

2.5 

3 

1
0

2
4

 

2
0

4
8

 

4
0

9
6

 

8
1

9
2

 

1
0

2
4

 

2
0

4
8

 

4
0

9
6

 

8
1

9
2

 

1
0

2
4

 

2
0

4
8

 

4
0

9
6

 

8
1

9
2

 

1
0

2
4

 

2
0

4
8

 

4
0

9
6

 

8
1

9
2

 

1
0

2
4

 

2
0

4
8

 

4
0

9
6

 

8
1

9
2

 

L4-B8-T512 L6-B16-T512 L4-B16-T512 L4-B16-T256 L4-B8-T256 

%
 o

f 
p

ea
k 

B
W

. 

ru
n

ti
m

e 
[m

s]
 

(a) Matrix transpose performance 
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(b) Matrix transpose energy/power consumption 
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(c) Matrix blocking performance 
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(d) Matrix blocking energy/power consumption 
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(e) Cube rotation performance 
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(f) Cube rotation energy/power consumption 
energy power 

Fig. 6. Runtime, bandwidth utilization, energy and power consumption of layout transform operations for various matrix sizes and various DRAM configurations.

multi-threaded implementation from [19], which outperforms
Intel MKL, running on an Intel Xeon E3-1230 (Sandy Bridge)
processor. Xeon E3-1230 features a dual channel DDR3-
1333 DRAM with peak bandwidth of 21 GB/s. For the GPU
implementation, we use an optimized CUDA implementation
from Nvidia [20] running on an Nvidia GTX 670 GPU. For
the HAMLeT implementation we use a low-end configuration
(L4-B8-T256) which has a peak bandwidth of 201 GB/s which
is very close to the GTX-670’s 192 GB/s peak bandwidth. The
comparison is presented in Figure 7.

HAMLeT demonstrates up to an order of magnitude higher
performance in terms of runtime as shown in Figure 7. Both
CPU and GPU suffer from high latency overhead of the
roundtrip movement of the data from DRAM to on-chip
memory hierarchy and back to the DRAM. Further, inefficient
strided access patterns of the layout transforms degrade the
DRAM performance and make the overall operation mem-
ory bounded. HAMLeT implements efficient layout transform
algorithms on its parallel architecture which enables much
higher, very close to peak, bandwidth utilization compared
to CPU and GPU (see Figure 7). Here we emphasize that
HAMLeT is not proposed as an alternative to CPU and GPU,
instead, it can be integrated into their memory subsystem as a
hardware accelerator for data reorganization.

C. Hardware Area and Power Analysis

We also present power and area cost analysis for the
hardware implementation of HAMLeT in 32nm technology
node. We synthesize the HDL implementation targeting a
commercial 32nm standard cell library using Synopsys De-
sign Compiler following a standard ASIC synthesis flow.

TABLE II. AREA AND POWER CONSUMPTION OF THE SRAM BLOCKS.
DRAM conf. Required SRAM conf. Area Power
Page (kb) / Vaults Banks / Size (kB) / Width (mm2) (mW)

8 / 8 8 / 64 / 32 1.28 232.1
8 / 16 16 / 32 / 32 1.28 253.8
16 / 8 8 / 256 / 32 4.68 792.2
16 / 16 16 / 128 / 32 4.62 835.8

In addition to the standard ASIC synthesis flow, for non-
HDL SRAM memory blocks, we use CACTI 6.5 [21]. An
example control unit implementation that handles the matrix
blocking consumes 1970 µm2 chip area and 1036 µW power
at 1 GHz clock frequency. In fact, even the fully generic
HAMLeT control unit (see Figure 2(c)) is a very simple state
machine, hence the overall area and power is dominated by
the SRAM blocks. Table II reports the area and the power
consumption of the SRAM blocks at full utilization for various
memory configurations. We observe that the typical area and
power overhead of the HAMLeT is very low such that it
consumes 2–7% of the logic layer area and it increases the
power consumption by 3–5.5% when considered as a part of
an HMC-like system [10]. Hence it can be safely integrated
into the logic layer without thermal concerns.

VII. RELATED WORK

Memory access scheduling techniques for achieving high
performance [1] are limited to a fixed window of requests
and do not address the source of the problem. Furthermore,
compiler based optimizations such as [2], [3] are limited
by data dependencies, and they cannot capture the dynamic
runtime information.

Transforming the memory layout at runtime has the latency
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Fig. 7. Memory layout transform performance on CPU, GPU and 3D-DRAM based HAMLeT for various matrix sizes.

and energy overhead of the roundtrip data movement [22],
[4], [18]. Further, it is associated with a bookkeeping cost for
updating the page tables [4], [18]. Specialized copy engines
[23], changing the structure of the DRAM for bulk data
movement [24], or using GPU’s high memory bandwidth to
overlap the layout transforms with slow PCI data transfer [25]
are some of the proposed techniques to mitigate the mentioned
problems. Whereas, HAMLeT is a high-bandwidth and energy-
efficient data reorganization accelerator integrated within 3D-
stacked DRAM that implements efficient layout transform
algorithms in the memory.

There are also several related work demonstrating 3D-
stacked DRAM and processing elements integrated together for
application acceleration [8], [26], [27], and for general purpose
computing [6], [10], [5], [7]. Integrating a high-performance
general purpose processor underneath the DRAM raises some
thermal issues, on the other hand, energy-efficient accelerators
are specific to a certain application.

VIII. CONCLUSION

In this paper, we presented a high-bandwidth and energy-
efficient hardware accelerated memory layout transform
(HAMLeT) framework integrated within 3D-stacked DRAMs.
HAMLeT implements efficient memory layout transform algo-
rithms on its parallel architecture which utilizes the locality and
parallelism (bank/vault/layer) in a 3D-stacked system. Further,
the hardware implementation of HAMLeT in the logic layer is
very simple and does not require any changes to the DRAM
layers. Our experiments demonstrate that it can transform
multidimensional matrix layouts while achieving close to peak
bandwidth utilization, offering an order of magnitude higher
performance than commodity CPU and GPUs.
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