
Fast Fourier Transform on FPGA: Design Choices and Evaluation
Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Püschel

Electrical and Computer Engineering Department
Carnegie Mellon University

Pittsburgh, PA, U.S.A.
{pam, franzf, jhoe, pueschel}@ece.cmu.edu

The discrete Fourier transform (DFT) is arguably the most important building block in digital signal

processing applications. Fast algorithms for computing the DFT, called fast Fourier transforms (FFTs), exhibit
concurrency and regularity that make them well suited for hardware implementation. Many different FFT
implementations have been created for Field Programmable Gate Array (FPGA) platforms since the advent of this
technology.

These implementations occupy a design space spanned by rather well-known degrees of freedom at different
levels of design abstraction. However, an attempt to systematically assess the impact of the different design choices is
very difficult because the available implementations in the literature are usually optimized for specific design
specifications (e.g., signal length, precision, performance, or cost). Further, they target different generations of FPGA
architectures.

In the Spiral project, we have developed a tool to automatically generate a large variety of RTL-synthesized
FFT designs. The tool supports design choices at different levels of abstraction, namely: different algorithms,
datapath architectures, and choices in the FPGA-specific mapping. This technology provides the opportunity to
systematically evaluate the different design points under a common tool flow and target, in this case Xilinx ISE 8.1i
and Virtex-II Pro. In doing so, we can quantify the impact of the different choices available and provide guidelines
for decision making in future FFT implementations.

We examine two primary options in datapath architecture: 1) fully streamed datapaths for throughput
optimization, and 2) horizontal-reuse datapaths for latency optimizations. We also explore low-level FPGA-specific
considerations including the utilization of dedicated arithmetic units, efficient storage of twiddle constants, and
methods for implementing data permutations. Lastly, we offer a systematic quantitative evaluation of RTL-level FFT
implementations that are placed and routed for Xilinx Virtex-II Pro FPGAs. We observe that the combined degrees of
freedom offered by these decisions result in a richly varied space of FPGA FFT implementations, allowing a wide
range of tradeoffs between performance and resource requirements to suit application-specific requirements.

Category: B.6.3 Hardware, Design Aids, Automatic synthesis

Terms: Algorithm, Design

Keywords: Discrete Fourier transform, Fast Fourier transform, IP, FPGA

