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Abstract. Stencil computations are at the core of applications in many domains
such as computational electromagnetics, image processing, and partialdifferen-
tial equation solvers used in a variety of scientific and engineering applications.
Short-vector SIMD instruction sets such as SSE and VMX provide a promising
and widely available avenue for enhancing performance on modern processors.
However a fundamental memory stream alignment issue limits achieved perfor-
mance with stencil computations on modern short SIMD architectures. Inthis pa-
per, we propose a novel data layout transformation that avoids the stream align-
ment conflict, along with a static analysis technique for determining where this
transformation is applicable. Significant performance increases are demonstrated
for a variety of stencil codes on several modern processors with SIMD capabilities.

1 Introduction

Short vector SIMD extensions are included in all major high-performance CPUs. While
ubiquitous, the ISA and performance characteristics vary from vendor to vendor and
across hardware generations. For instance, Intel has introduced SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AVX, and LRBni ISA extensions over the years. With every processor,
the latency and throughput numbers of instructions in theseextensions change. IBM,
Freescale, and Motorola have introduced AltiVec, VMX, VMX128, VSX, Cell SPU,
PowerXCell 8i SPU SIMD implementations. In some instances (RoadRunner, Blue-
Gene/L), custom ISA extensions were designed since the supercomputing installation
was big enough to warrant such an investment. These extensions provide from 2-way
adds and multiplies up to 16-way fused multiply-add operations, promising significant
speed-up. It is therefore important to optimize for these extensions.

Stencil computations represent an important class, occuring in many image process-
ing applications, computational electromagnetics and solution of PDEs using finite dif-
ference or finite volume discretizations. There has been considerable recent interest in
optimization of stencil computations [7], [6], [16], [17],[27], [26], [11], [37], [10], [4],
[9], [40], [38], [41], [8], [39], [43], [25], [21], [34]. In this paper, we focus on the prob-
lem of optimizing single-core performance on modern processors with SIMD instruction
sets. Stencil computations are readily expressible in a form with vectorizable innermost
loops where arrays are accessed at unit stride. However, as elaborated upon later, there is
a fundamental performance limiting factor with all currentshort-vector SIMD instruction
sets such as SSE, AVX, VMX, etc. We formalize the problem through the abstraction
of stream alignment conflicts. We note that the alignment conflict issue we formulate
and solve in this paper pertains to algorithmic alignment constraints and is distinctly
different from the previously studied topic of efficient code generation on SIMD archi-
tectures with hardware alignment constraints [22, 12, 44, 13]. We address the problem



of resolving stream alignment conflict through the novel useof a nonlinear data layout
transformation and develop a compiler framework to identify and suitably transform the
computations.

for (t = 0; t < T; ++t) {
for (i = 0; i < N; ++i)

for (j = 1; j < N+1; ++j)
S1: C[i][j] = A[i][j] + A[i][j-1];

for (i = 0; i < N; ++i)
for (j = 1; j < N+1; ++j)

S2: A[i][j] = C[i][j] + C[i][j-1];
}

for (t = 0; t < T; ++t) {
for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)
S3: C[i][j] = A[i][j] + B[i][j];

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

S4: A[i][j] = B[i][j] + C[i][j];
}

Performance:
AMD Phenom 1.2 GFlop/s
Core2 3.5 GFlop/s
Core i7 4.1 GFlop/s

Performance:
AMD Phenom 1.9GFlop/s
Core2 6.0GFlop/s
Core i7 6.7GFlop/s

(a) Stencil code (b) Non-Stencil code
Fig. 1.Example to illustrate addressed problem: The stencil code (a) has much lower performance
than the non-stencil code (b) despite acccessing 50% fewer data elements.

We use a simple example to illustrate the problem addressed.Consider the two sets
of loop computations in Fig. 1(a) and Fig. 1(b), respectively. With the code shown in
Fig. 1(a), for each of the two statements, 2×N2+N distinct data elements are referenced,
with N2 elements ofC andN2+N elements ofA being referenced in S1, andN2 elements
of A andN2+N elements ofC being referenced in S2. With the code shown in Fig. 1(b),
each of S3 and S4 access 3×N2 distinct data elements, so that the code accesses around
1.5 times as many data elements as the code in Fig. 1(a). Both codes compute exactly
the same number (2×N2) of floating point operations. Fig. 1 shows the achieved single-
core performance of the two codes on three different architectures, compiled using the
latest version of ICC with auto-vectorization enabled. It may be seen that on all systems,
the code in Fig. 1(b) achieves significantly higher performance although it requires the
access of roughly 50% more data elements.

As explained in the next section, the reason for the lower performance of the stencil
code in Fig. 1(a) is that adjacent data elements (stored as adjacent words in memory)
from arrays A and C must be added together, while the data elements that are added
together in the code of Fig. 1(b) come from independent arrays. In the latter case, we
can view the inner loop as representing the addition of corresponding elements from
two independent streamsB[i][0:N-1] andC[i][0:N-1], but for the former, we are
adding shifted versions of data streams:A[i][0:N-1], A[i][1:N], C[i][0:N-1],
andC[i][1:N]. Loading vector registers in this case requires use of either (a) redundant
loads, where a data element is moved with a different load foreach distinct vector register
position it needs to be used in, or (b) load operations followed by additional inter- and
intra-register movement operations to get each data element into the different vector
register slots where it is used. Thus the issue we address is distinctly different from the
problem of hardware alignment that has been addressed in a number of previous works.
The problem we address manifests itself even on architectures where hardware alignment
is not necessary and imposes no significant penalty (as for example the recent Intel Core
i7 archirecture).

In this paper, we make the following contributions:

– We identify a fundamental performance bottleneck for stencil computations on all
short-vector SIMD architectures and develop a novel approach to overcoming the
problem via data layout transformation.



– We formalize the problem in terms of stream alignment conflicts and present a
compile-time approach to identifying vectorizable computations that can benefit
from the data layout transformation.

– We present experimental results on three target platforms that demonstrate the effec-
tiveness of the transformation approach presented in this paper.

To the best of our knowledge, this is the first work to identifyand formalize this problem
with algorithmicstream alignment conflicts and provide a solution to it.

The paper is structured as follows. In the next section, we elaborate on the addressed
problem. In Sec. 3, we provide an overview of the data layout transformation approach
through examples. Sec. 4 presents the formalization and compile-time analysis for de-
tecting stream alignment conflicts. Sec. 5 presents experimental methodology and re-
sults. Related work is covered in Sec. 6 and we conclude in Sec. 7.

2 Background and Overview of Approach

2.1 Illustrative Example

The reason for the significant performance difference between the two codes shown in
Sec. 1, is that one of them (Fig. 1(a)) exhibits what may be calledstream alignment con-
flict, while the other (Fig. 1(b)) is free of such conflicts. When stream alignment conflicts
exist, the compiler must generate additional loads or inter-register data movement in-
structions (such as shuffles) in order to get interacting data elements into the same vector
register positions before performing vector arithmetic operations. These additional data
movement operations cause the performance degradation seen in Fig. 1. Fig. 2 shows
the x86 assembly instructions generated by the Intel ICC compiler on a Core 2 Quad
system for code similar to that in Fig. 1(a), along with an illustration of the grouping of
elements into vectors. The first four iterations of inner loop j perform addition on the
pairs of elements(B[0],B[1]), (B[1],B[2]), (B[2],B[3]), and(B[3],B[4]).
Four single-precision floating-point additions can be performed by a single SSE SIMD
vector instruction (addps), but the corresponding data elements to be added must be
located at the same position in two vector registers. To accomplish this, ICC first loads
vectorsB[0:3] andB[4:7] into registers xmm1 and xmm2. Next, a copy of vector
B[4:7] is placed into register xmm3. Registers xmm1 and xmm3 are then combined
with thepalignr instruction to produce the unaligned vectorB[1:4] in register xmm3.
This value is used by theaddps instruction to produce an updated value forA[0:3] in
xmm3. Finally, an aligned store updatesA[0:3]. The vectorB[4:7] in register xmm2
is ready to be used for the update ofA[4:7].

2.2 Stream Alignment Conflict

We now use a number of examples to explain the issue of stream alignment conflicts. Be-
fore we proceed, we reiterate that the issue we address is a more fundamental algorithmic
data access constraint and is not directly related to the hardware alignment restrictions
and penalties on some SIMD instruction set architectures. For example, on IBM Power
series architectures using the VMX SIMD ISA, vector loads and stores must be aligned
to quadword boundaries. On x86 architectures, unaligned vector loads/stores are permit-
ted but may have a significant performance penalty, as on the Core 2 architecture. On the
more recent Core i7 x86 architecture, there is very little penalty for unaligned loads ver-
sus aligned loads. The performance difference on the Core i7shown in Fig. 1, however,
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xmm1

xmm2

xmm3
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I J K L
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... ... ... ...

... ... ... ...

MEMORY CONTENTS

for (i = 0; i < H; i++)

  for (j = 0; j < W - 1; j++)

    A[i][j] = B[i][j] + B[i][j+1];

VECTOR REGISTERS x86 ASSEMBLY

movaps B(...), %xmm1

movaps 16+B(...),%xmm2

movaps %xmm2, %xmm3

palignr $4, %xmm1, %xmm3

;; Register state here

addps %xmm1, %xmm3

movaps %xmm3, A(...)

Fig. 2. Illustration of additional data movement for stencil operations

provides evidence that the problem we address is a more fundamental algorithmic align-
ment issue. While hardware alignment restrictions/penalties on a target platform may
exacerbate the problem with stream alignment conflicts, theproblem exists even if an
architecture has absolutely no restrictions/penalties for unaligned loads/stores. The work
we present in this paper thus addresses a distinctly different problem than that addressed
by many other works on optimizing code generation for SIMD vector architectures with
hardware alignment constraints.

Vectorizable computations in innermost loops may be viewedas operations on streams
corresponding to contiguous data elements in memory. The computation in the inner loop
with statement S1 in Fig. 1(b) performs the computationC[i][0:N-1] = A[i][0:N-1]+
B[i][0:N-1], i.e. the stream of N contiguous data elementsA[i][0:N-1] is added to
the stream of N contiguous elementsB[i][0:N-1] and the resulting stream is stored in
C[0][0:N-1]. In contrast, the inner loop with statement S1 in Fig. 1(a) addsA[i][1:N]
andA[i][0:N-1], where these two streams of length N are subsets of the same stream
A[i][0:N] of length N+1, but one is shifted with respect to the other by one element.
When such shifted streams are computed upon using current short-vector SIMD architec-
tures, although only N+1 distinct elements are accessed, essentially 2×N data moves are
required (either through additional explicit loads or inter-register data movement opera-
tions like shuffles). The extra moves are required because ofthe inherent characteristic
of short-vector SIMD instructions that only elements in corresponding slots of vector
registers can be operated upon.

While in the example of Fig. 1(a) the stream alignment conflictis apparent because
the misaligned streams arise from two uses of the same array in the same statement,
the same underlying conflict may arise more indirectly, as illustrated by the example of
Fig. 3.

In Fig. 3(a), the stream computations corresponding to the inner loopj areA[i][0:N]
= B[i][0:N]+C[i][0:N] for S3 andD[i][0:N] = A[i][0:N]+C[i][0:N] for S4.
StreamsA[i][0:N] andC[i][0:N] are used twice, but all accesses are mutually aligned.



for (i = 0; i < N+1; ++i)
for (j = 0; j < N+1; ++j) {

S3: A[i][j] = B[i][j] + C[i][j];
S4: D[i][j] = A[i][j] + C[i][j];

}

for (i = 0; i < N+1; ++i)
for (j = 0; j < N+1; ++j) {

S5: A[i][j] = B[i][j] + C[i][j];
S6: D[i][j] = A[i][j] + C[i][j+1];

}

(a) No stream alignment conflict (b) Stream alignment conflict exists

for (i = 0; i < N+1; ++i)
for (j = 0; j < N+1; ++j) {

S7: A[i][j] = B[i][j] + C[i][j];
S8: C[i][j] = A[i][j] + D[i][j+1];

}

(c) No stream alignment conflict

Fig. 3. Illustration of indirect occurrence of stream alignment conflict

With the example shown in Fig. 3(b), however, the stream computations corresponding to
the inner j loop areA[i][0:N] = B[i][0:N]+C[i][0:N] for S5 andD[i][0:N] =
A[i][0:N]+C[i][1:N+1] for S6. Here we have a fundamental stream alignment con-
flict. If A[i][0:N] andC[i][0:N] are aligned together for S5, there is a misalignment
betweenA[i][0:N] andC[i][1:N+1] in S6. Finally, there is no stream alignment
conflict in Fig. 3(c) since the same alignment ofA[i][0:N] with C[i][0:N] is needed
for both S7 and S8.

The abstraction of stream alignment conflicts is applicablewith more general ar-
ray indexing expressions, as illustrated by the examples inFig. 4. In Fig. 4(a), there is
no stream alignment conflict. In S9, streamsB[i][i:i+N] andB[i+1][i:i+N] (the
second and third operands) need to be aligned. Exactly the same alignment is needed be-
tween these streams in S10 (the first operandB[i][i+1:i+N+1] and the second operand
B[i+1][i+1:i+N+1]).

for (i = 1; i < N+1; ++i)
for (j = 0; j < N+1; ++j) {

S9: A[i][j] = B[i-1][i+j] +
B[ i ][i+j] +
B[i+1][i+j];

S10: A[i+1][j] = B[ i ][i+j+1] +
B[i+1][i+j+1] +
B[i+2][i+j+1];

}

for (i = 1; i < N+1; ++i)
for (j = 0; j < N+1; ++j) {

S11: A[i][j] = B[i-1][i+j+1] +
B[ i ][ i+j ] +
B[i+1][i+j+1];

S12: A[i+1][j] = B[ i ][i+j+2] +
B[i+1][i+j+1] +
B[i+2][i+j+2];

}

(a) No stream alignment conflict (b) Stream alignment conflict exists

Fig. 4. Illustration of stream alignment conflict with general array indexing expressions

In contrast, in Fig. 4(b) a fundamental algorithmic stream alignment conflict ex-
ists with the reused streams in S11 and S12. In S11, the streamB[i][i:i+N] (second
operand) must be aligned withB[i+1][i+1:i+N+1] (third operand), but in S12 stream
B[i][i+2:i+N+2] (first operand) must be aligned withB[i+1][i+1:i+N+1] (second
operand). Thus the required alignments between the reused streams in S11 and S12 are
inconsistent — a +1 shift ofB[i][x:y] relative toB[i+1][x:y] is needed for S11
but a -1 shift ofB[i][x:y] relative toB[i+1][x:y] is needed for S12 i.e., a stream
alignment conflict exists.

A formalization and algorithm for compile-time characterization of the occurrences
of stream alignment conflicts is developed in Sec. 4. Before providing those details,



we present a novel approach through data layout transformation to avoid performance
degradation due to stream alignment conflicts.

3 Data Layout Transformation

In this section, we show how the poor vectorization resulting from stream alignment
conflicts can be overcome through data layout transformation. As explained in the previ-
ous section using Fig. 2, the main problem is that adjacent elements in memory map to
adjacent slots in vector registers, so that vector operations upon such adjacent elements
cannot possibly be performed without either performing another load operation from
memory to vector register or performing some inter-register data movement. The key
idea behind the proposed data layout transformation is for potentially interacting data
elements to be relocated so as to map to the same vector register slot.

3.1 Dimension-Lifted Transposition

We explain the data layout transformation using the examplein Fig. 5. Consider a
one dimensional array Y with 24 single-precision floating point data elements, shown
in Fig. 5(a), used in a computation with a stream alignment conflict, such asZ[i] =
Y[i-1] + Y[i] + Y[i+1].

Fig. 5(b) shows the same set of data elements from a differentlogical view, as a two-
dimensional 4× 6 matrix. With row-major ordering used by C, such a 2D matrix will
have exactly the same memory layout as the 1D matrix Y. Fig. 5(c) shows a 2D matrix
that is the transpose of the 2D matrix in Fig. 5(b), i.e., a dimension-lifted transpose of
the original 1D matrix in Fig. 5(a). Finally, Fig. 5(d) showsa 1D view of the 2D matrix
in Fig. 5(c).

It can be seen that the data elements A and B, originally located in adjacent memory
locations Y[0] and Y[1], are now spaced farther apart in memory, both being in column
zero but in different rows of the transposed matrix shown in Fig. 5(c). Similarly, data
elements G and H that were adjacent to each other in the original layout are now in the
same column but different rows of the dimension-lifted transposed layout. The layout
in Fig. 5(c) shows how elements would map to slots in vector registers that hold four
elements each. The computation of A+B, G+H, M+N, and S+T can be performed using a
vector operation after loading contiguous elements [A,G,M,S] and [B,H,N,T] into vector
registers.

3.2 Stencil Computations on Transformed Layout

Fig. 6 provides greater detail on the computation using the transformed layout after a
dimension-lifted transposition. Again, consider the following computation:

for (i = 1; i < 23; ++i)
Sb: Z[i] = Y[i-1] + Y[i] + Y[i+1];

Sixteen of the twenty two instances of statementSb can be computed using full vec-
tor operations: [A,G,M,S] + [B,H,N,T] + [C,I,O,U]; [B,H,N,T] + [C,I,O,U] + [D,J,P,V];
[C,I,O,U] + [D,J,P,V] + [E,K,Q,W]; and [D,J,P,V] + [E,K,Q,W] +[F,L,R,X]. In Fig. 6,
these fully vectorized computations are referred to as the “steady state”. Six statement in-
stances (computing E+F+G, F+G+H, K+L+M, L+M+N, Q+R+S, and R+S+T) represent
“boundary” cases since the operand sets do not constitute full vectors of size four. One
possibility is to perform the operations for these boundarycases as scalar operations,



Input code:
for (i = 1; i < 23; ++i)

Z[i] = Y[i-1] + Y[i] + Y[i+1];

(a) Original Layout

A B C D E F G H I J K L M N O P Q R S T U V W X

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(d) Transformed Layout

A G M S B H N T C I O U D J P V E K Q W F L R X

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(b) Dimension Lifted (c) Transposed

A G M S

B H N T

D J P V

E K Q W

F L R X

C I O U

V

V

N

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

V

N

V

Fig. 5.Data layout transformation for SIMD vector length of 4

Compute

Steady State

of Array Z

Compute

Boundaries

of Array Z

Shuffle

Opposite

Boundaries

of Array Y

Original

Array Y

A G M S

B H N T

D J P V

E K Q W

F L R X

C I O U

F L R X

F L R

F L R

A G M S

G’ M’ S’

B H N T

A G M S

G M S

E K Q W

F L R X

F’ L’ R’

G M S

Fig. 6. Illustration of steady state and boundary computation

however, it is possible to use masked vector operations to perform them more efficiently.
Fig. 6 illustrates the boundary cases corresponding to elements at the top and bottom
rows in the transposed layout.

At the top boundary, a “ghost cell” is created by performing aright-shift to the bot-
tom row vector [F,L,R,X] by one position to align [X,F,L,R] above [A,G,M,S]. The vec-
tor operation [X,F,L,R]+[A,G,M,S]+[B,H,N,T] is then performed and a masked write is
performed so that only the last three components of the result vector get written. The
bottom boundary is handled similarly, as illustrated in Fig. 6.

Higher order stencils simply result in a larger boundary area. Further, the dimension-
lifted transpose layout transformation can be applied in the same manner for multi-
dimensional arrays, as illustrated in Fig. 7. The fastest varying dimension (rightmost
dimension for C arrays) of a multi-dimensional array is subjected to dimension-lifting
and transposition (with padding if the size of that dimension is not a perfect multiple of
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(a) Original Layout

(b) Transformed Layout

0 1 2

c0 c3c2c1

n0 n3n2n1

s0 s3s2s1

w0 w3w2w1e0 e3e2e1

c0 c3c2c1

w0 w3w2w1

e0 e3e2e1

n0 n3n2n1 s0 s3s2s1

Fig. 7. Illustration for 2D 5-point stencil

vector length). Fig. 7 highlights a set of array locations accessed by a 2D 5-point stencil
computation on a four wide vector architecture.

In the following section, we present a compiler framework toautomatically detect
where dimension lifting can be used to overcome the performance loss due to stream
alignment conflicts.

4 Framework for Stream Alignment Conflict Detection

Stream alignment conflicts often occur when vectorizing stencil computations, as shown
in the examples of Section 2. Our goal in this section is to develop compiler algorithms
for detecting stream alignment conflicts. Note that stream alignment conflict is not lim-
ited to stencil computations; therefore, dimension-lifted transposition is useful for a more
general class of programs. In this paper, we limit the discussion to vectorizable innermost
loops. We assume that high-level transformations to exposeparallel innermost loops that
are good vectorization candidates have already been applied to the code [1]. The first task
is to collect all vectorizable innermost loops. Some conditions must hold for our analysis
to be performed: (1) all memory references are either scalars or accesses to (multidi-
mensional) arrays; (2) all dependences have been identified; and (3) the innermost loop
variable has a unit increment. Note that our framework handles unrolled loops as well;
for ease of presentation, we will assume a non-unrolled representation of unrolled loops.

4.1 Program Representation

We first define our representation of candidate loops to be analyzed. The objective is to
detect (a) if a loop is vectorizable, and (b) if it has a streamalignment conflict that can
be resolved using dimension-lifted transposition of accessed arrays. We operate on an
abstract program representation that is independent of theprogramming language and
analyze the memory references of candidate innermost loops.



Innermost loopsInnermost loops are the only candidates we consider for vectorization
after dimension-lifted transposition of arrays. As statedearlier, we assume that such
loops have a single induction variable that is incremented by one in each iteration of the
loop. This is required to ensure the correctness of the analysis we use to characterize
the data elements accessed by an innermost loop. We also require the innermost loops to
have a single entry and exit point, so that we can precisely determine where to insert the
data layout transformation (i.e., dimension-lifted transposition) code.

Memory referencesA loop contains a collection of memory references. All data ele-
ments accessed by any given iteration of the loop must be statically characterized by an
access functionf of the enclosing loop indices and other parameters. For a given execu-
tion of the loop whose iterator isi, all function parameters besidei must be constant.
f can be multidimensional for the case of an array reference, with one dimension inf
for each dimension of the array. For instance, for the referenceB[i][alpha+M*j] with
innermost loop iteratorj, the access function isfB( j) = (i,alpha+M. j).

4.2 Candidate Vector Loops

Dimension-lifted transposition may be useful only for arrays referenced in vectorizable
loops. We now provide a simple compiler test to determine which inner loops are candi-
dates for vectorization, based on data dependence analysisof the program. Specifically,
we require a candidate innermost loop to meet the following constraints1: (1) the loop
does not have any loop-carried dependence; and (2) two consecutive iterations of the
loop access either the same memory location or two locationsthat are contiguous in
memory, i.e., the loop has either stride-zero or stride-oneaccesses.

Loop-carried dependencesTo determine if a loop is parallel, we rely on the standard
concept of dependence distance vectors [19]. There is a dependence between two itera-
tions of a loop if they both access the same memory location and one of these accesses
is a write. If there is no loop-carried dependence, then the loop is parallel.

We now define the concept of aarray-distance vectorbetween two references, re-
stricted to the inner loop (all other variables are assumed constant).

Definition 1 (Array-Distance Vector between two references). Consider two access
functions f1A and f2A to the same arrayA of dimension n. Let ı and ı′ be two iterations
of the innermost loop. The array-distance vector is defined as the n-dimensional vector
δ(ı, ı′) f 1

A, f 2
A

= f 1
A(ı)− f 2

A(ı′).

Let us illustrate Definition 1 with two referencesA[i][j] andA[i-1][j+1], en-
closed by loop indicesi and j with j as the innermost loop iterator. We havef 1

A( j) = (i, j)
and f 2

A( j) = (i −1, j +1). The array-distance vector is

δ( j, j′) f 1
A, f 2

A
= (1, j − j′−1)

A necessary condition for the existence of a dependence carried by the innermost
loop is stated below.

Definition 2 (Loop-carried dependence).There exists a dependence carried by the in-
nermost loop between two references f1

A and f2A, at least one of which is a write to
memory, if there exists ı6= ı′ such thatδ(ı, ı′) f 1

A, f 2
A

= 0.

1 The case of vectorizing reductions is not addressed here.



Note thatδ(ı, ı′) f 1
A, f 2

A
requires the values of loop iterators other than the innermost

loop to be fixed. Also, whenδ(ı, ı′) f 1
A, f 2

A
, the difference between the access functions,

still contains symbols beyond the inner-loop iterator (e.g., δ(ı, ı′) f 1
A, f 2

A
= (k,alpha)) we

conservatively assume a loop-carried dependence unless the value of the symbols can be
determined statically.

Stride-one memory accessesThe second condition for a loop to be a SIMD-vectorization
candidate is that all memory accesses are such that two consecutive iterations access
either consecutive memory locations or an identical location, for all iterations of the
innermost loop.

To test for this property, we operate individually on each access function. Memory
references that always refer to the same location for all values of the innermost loop
are discarded: they are the equivalent to referencing a scalar variable. For each of the
remaining references, we form the array-distance vector between two consecutive iter-
ations, and ensure the distance between the two locations isequal to 1. For the case
of multidimensional arrays, for the distance in memory to be1, the array-distance vec-
tor must have a zero value in all but the last dimension where it must be one. This is
formalized as follows:

Definition 3 (Stride-one memory access for an access function). Consider an access
function fA surrounded by an innermost loop. It has stride-one access if∀ı, δ(ı, ı +
1) fA, fA = (0, . . . ,0,1).

For example, considerA[i][j] surrounded by the innermostj loop. fA = (i, j) and
δ( j, j + 1) fA, fA = (0,1). Hence thej loop has stride-one access forfA as above. Let us
suppose that for the samefA, loop i is the innermost loop; in this case, we would have
δ(i, i + 1) fA, fA = (1,0) which does not satisfy the condition in Definition 3. Therefore
loop i does not have stride-one access with respect tofA.

4.3 Detection of Stream Alignment Conflict

A stream alignment conflict occurs when a given memory location is required to be
mapped to two different vector slots. So, it follows that if amemory element is not
used twice or more during the execution of the innermost loop, then a stream alignment
conflict cannot occur. If some memory element is reused, one of two cases apply: either
the element is reused only during the same iteration of the innermost loop, or it is used
by another iteration of the innermost loop. Stream alignment conflict can occur only for
the latter; if the element is reused during the same iteration, it is mapped to the same
vector slot and there is no stream alignment conflict.

Cross-iteration reuse due to distinct referencesOur principle to detect if a given
memory location is being referenced by two different iterations follows the concept of
loop-carried dependence, but we extend now toall pairs of references and not limit to
those containing a write operation.

For a given innermost loop, we thus compute the array-distance vector for all pairs
of distinct referencesf 1 and f 2 to the same array, and see if there exists two distinct
iterations such that

δ(ı, ı′) f 1
, f 2 = 0



Consider the example of Figure 8(a). For the case off 1
B = (i, j +1) and f 2

B = (i, j), we
can determine if there is cross-iteration reuse by forming the constraintδ( j, j′) f 1

B, f 2
b

=

(0, j +1− j′) and solving the system of constraints

S :

{

j 6= j′
0 = 0
j +1− j′ = 0

SinceShas a solution, there is cross-iteration reuse in the innermost loop. Technically,
the presence of a solution toS is only a necessary condition for cross-iteration reuse.
Some cases of cross-iteration reuse may not be detected, typically when distinct vari-
ables used in the access functions have the same value at runtime: theevaluationof the
expression ofδ may be 0, but simply doing the difference of the symbols may not give
0. Addressing this issue requires classical data-flow analysis problem for arrays [19]
and can be solved with a more complete analysis and under stronger assumptions on
the form of the input code. In our framework, the only consequence of not detecting
dynamic cross-iteration reuse is that we may not have applied dimension-lifted transpo-
sition at places where it could have been useful. Our analysis is conservative in that sense
but it requires only minimal assumptions on the input code.

for (i = lbi; i < ubi; ++i)
for (j = lbj; j < ubj; ++j)

A[i][j] = B[ i ][j+1] +
B[ i ][ j ] +
B[i-1][ j ];

for (i = lbi; i < ubi; ++i)
for (j = lbj; j < ubj; ++j)
{

R: A[i][j] += B[i][j-1];
S: C[i][j] += B[i][ j ];

}

for (i = lbi; i < ubi; ++i)
{

A[i][lbj] += B[i][lbj-1];
for (j = lbj + 1; j < ubj; ++j)
{

A[i][ j ] += B[i][j-1];
C[i][j-1] += B[i][j-1];

}
C[i][ubj] += B[i][ubj];

}

(a) (b) (c)

Fig. 8.Code examples

Stream offset The presence of a cross-iteration reuse does not necessarily imply the
presence of a stream alignment conflict. In particular, all cases where cross-iteration
reuse can be removed by iteration shifting (that is, a simpleoffset of the stream) do not
correspond to a stream alignment conflict. Thus, in order to detect only the set of arrays
to be dimension-lifted and transposed, we need to prune the set of references which do
not generate a stream alignment conflict from the set of all references with cross-iteration
reuse. .

Consider the example of Figure 8(b) that has cross-iteration reuse. It is possible to
modify the innermost loop such that the reuse disappears viaiteration shifting [19].
Shifting is the iteration space transformation view of manipulating the stream offset, as
it influences which specificinstanceof the statements are being executed under the same
iteration of loop j. Consider shifting the second statement by 1, the transformed code is
shown in Figure 8(c).

Definition 4 (Stream offset via shifting).Consider two statements R and S. Changing
the stream offset is performed by shifting the iterations ofR with respect to the iterations
of S by a constant, scalar factorσR. All streams used by R have the same offsetσR.



There are two important properties of shifting for stream offset. First, as shown
above, shifting can make cross-iteration reuse disappear in some cases. It can also in-
troduce new cross-iteration reuse by assigning different offsets to streams associated
with the same array.

Second, shifting is not always a legal reordering transformation. It may reorder the
statements inside the loop, and change the semantics. This translates to a strong condition
on the legality of iteration shifting.

Definition 5 (Legality of iteration shifting). Consider a pair of statements R and S
such that they are surrounded by a common vectorizable innermost loop. LetσR be
(resp.σS) the shift factor used to offset the streams of R (resp. S). Ifthere is a dependence
between R and S, then to preserve the semantics it is sufficient to setσR = σS.

To determine if iteration shifting can remove cross-iteration reuse, we first observe
that it changes the access functions of a statementRby substitutingj with j−σR, given j
as the innermost loop iterator. The variablej can be used only in the last dimension of the
access function, since the loop is vectorizable with stride-one access. We then formulate
a problem similar to that of cross-iteration reuse analysis, with the important difference
being that we seek values ofσ that make the problem infeasible; indeed if the problem
has no solution, then there is no cross-iteration reuse. We also restrict it to the pairs of
references such that all but the last dimension of the accessfunctions are equal, as all
cases of reuse require this property. To ease the solution process, we thus reformulate it
into a feasibility problem by looking for a solution whereı = ı′ that is independent of the
value ofı.

Returning to the example in Figure 8(b), we have forB, f 1
B( j) = (i, j−1) and f 2

B( j) =
(i, j). We first integrate the offset factorsσ into the access function. As the two statements
are not dependent, we have one factor per statement that can be independently computed.
The access functions to consider are nowf 1

B( j) = (i, j −σR−1) and f 2
B( j) = (i, j −σS).

We consider the problem

T :
{

j = j′
j −σR−1− j′+σS = 0

If T has a solution for all values ofj, that is, a solution independent ofj then there is
no cross-iteration reuse. ForT , σR = 0 andσS = 1 is a valid solution and this iteration
shifting removes all cross-iteration reuse.

In order to find a valid solution for the whole inner-loop, it is necessary to combine
all reuse equalities in a single problem: theσ variables are shared for multiple references
and must have a unique value. Hence, for code in Figure 8(a), the full system to solve
integratesδ( j, j′) f 1

A, f 2
A
, is augmented withσR andσS, and is shown below.

T :

{ j = j′
j −σR−1− j′+σS = 0 Conditions forB
j −σR− j′−σS = 0 Conditions forA

T has no solution, showing that there is no possible iterationshifting that can remove all
cross-iteration reuse in Figure 8(a). Dimension-lifted transposition is thus required.

Putting it all together We now address the general problem of determining if a given in-
nermost loop suffers from a stream alignment conflict that can be solved via dimension-
lifted transposition. That is, we look for cross-iterationreuse that cannot be eliminated
via iteration shifting.



First, let us step back and precisely define in which cases dimension-lifted transposi-
tion can be used to solve a stream alignment conflict. Dimension-lifted transposition in
essence spreads out the memory locations of references involved in a stream alignment
conflict. In order to ensure there is no conflict remaining, one must precisely know, at
compile-time, the distance in memory required to separate all elements. This distance
must be a constant along the execution of the innermost loop.This translates to an addi-
tional constraint on the cross-iteration reuse that is responsible for the stream alignment
conflict: the reuse distance must be a constant. We define the scope of applicability of
dimension-lifted transposition as follows.

Definition 6 (Applicability of dimension-lifted transposi tion). Consider a collection
of statements surrounded by a common vectorizable inner loop. If there exists cross-
iteration reuse of a constant distance that cannot be eliminated by iteration shifting,
then the stream alignment conflict can be solved with dimension-lifted transposition.

If an array accessed in a candidate vector inner loop is dimension-lifted-and-transposed,
all arrays in the inner loop are also dimension-lifted-and-transposed. The data layout
transformation implies significant changes in the loop control and in the order the data
elements are being accessed. All arrays must be dimension-lifted unless some computa-
tions simply could not be vectorized anymore. We present in Figure 9 a complete algo-
rithm to detect which arrays are to be transformed by dimension-lifted transposition in a
program.

Input P: input program
Output Arrays: the set of arrays to be dimension-lifted

L ← /0
forall innermost loops l in P do

forall arrays A referenced in l do
/* Check loop-carried dependence */
forall write references f 1

A to A do
forall references f 2

A to A do
S ← { ∃ (ı, ı′), δ(ı, ı′) f 1

A, f 2
A

= 0 }

if S 6= /0 then goto next loop l
/* Check stride-one */
forall references fA to A do
S ← { ∀ ı, δ(ı, ı + 1) fA, fA = (0, ...,0,1) }
if S = /0 then goto next loop l

/* Check scalar reuse distance */
forall pairs of references f 1

A, f 2
A to A do

S ← {∃ (ı, ı′) δ(ı, ı′) f 1
A, f 2

A
= 0 }

if S 6= /0 then
S ← { α ∈ Z, δ(ı, ı) f 1

A, f 2
A

= (0, ...,0,α) }

if S = /0 then goto next loop l
L ← L ∪ l

forall l ∈ L do
/* Check conflict after iteration shifting */
T ← createIterationShiftingProblem(l)
if T = /0 then

Arrays(l) ← all arrays in l

Fig. 9. Algorithm to detect arrays to be dimension-lifted-and-transposed

ProcedurecreateIterationShiftingProblem creates a system of equalities that
integrates the shift factorsσ as shown in Section 4.3. If this system has no solution,
then at least one cross-iteration reuse remains even after iteration shifting. Since we have



prevented the cases where the reuse is not a scalar constant,then the conflict can be
solved with dimension lifting. We thus place all arrays of the loop into the list of arrays
to be dimension-lifted-and-transposed.

While solvingT , we compute values forσ to remove cross-iteration reuse. When it
is not possible to remove all conflicts with iteration shifting, we compute values forσ
that minimizes the distance between two iterations reusingthe same element. The largest
among all reuse distances in the iteration-shifted programis kept and used during code
generation to determine the boundary conditions.

5 Experimental Evaluation

The effectiveness of the dimension-lifting transformation was experimentally evaluated
on several hardware platforms using stencil kernels from a variety of application do-
mains. First, we describe the hardware and compiler infrastructure used for experiments.
Next, the stencil kernels used in the experiments are described. Finally, experimental
results are presented and analyzed.

5.1 Hardware

We performed experiments on three hardware platforms: AMD Phenom 9850BE, In-
tel Core 2 Quad Q6600, and Intel Core i7-920. Although all arex86 architectures, as
explained below, there are significant differences in performance characteristics for exe-
cution of various vector movement and reordering instructions.

Phenom 9850BEThe AMD Phenom 9850BE (K10h microarchitecture) is an x86-64
chip clocked at 2.5 GHz. It uses a 128b FP add and 128b FP multiply SIMD units
to execute a maximum of 8 single precision FP ops per cycle (20Gflop/s). The same
SIMD units are also used for double precision operations, giving a peak throughput
of 10 Gflop/s. Unaligned loads are penalized on this architecture, resulting in half the
throughput of aligned loads and an extra cycle of latency. The SSE shuffle instruction
shufps is used by ICC for single precision inter- and intra-register movement. Double
precision stream alignment conflicts are resolved by ICC generating consecutivemovsd
and movhpd SSE instructions to load the low and high elementsof a vector register.

Core 2 Quad Q6600The Intel Core 2 Quad Q6600 (Kentsfieldmicroarchitecture) is an
x86-64 chip running at 2.4 GHz. Like the Phenom, it can issue instructions to two 128-
bit add and multiply SIMD units per cycle to compute at a maximum rate of 19.2 single
precision GFlop/s (9.6 double precision Gflop/s). Themovups andmovupd unaligned
load instructions are heavily penalized on this architecture. Aligned load throughput is 1
load/cycle. Unaligned load throughput drops to 5% of peak when the load splits a cache
line and 50% of peak in all other cases. ICC generates thepalignr SSSE3 instruction
for single precision inter- and intra-register movement onCore 2 Quad. Double preci-
sion shifts are accomplished with consecutivemovsd-movhpd sequences as previously
described.

Core i7-920The Intel Core i7-920 (Nehalemmicroarchitecture) is an x86-64 chip run-
ning at 2.66 GHz. SIMD execution units are configured in the same manner as the pre-
viously described x86-64 processors, leading to peak FP throughput of 21.28 single pre-
cision GFlop/s and 10.64 double precision Gflop/s. Unaligned loads on this processor



are very efficient. Throughput is equal to that of aligned loads at 1 load/cycle in all
cases except cache line splits, where it drops to 1 load per 4.5 cycles. Single precision
code generated by ICC auto-vectorization uses unaligned loads exclusively to resolve
stream alignment conflicts. Double precision code containsa combination of consecu-
tive movsd-movhd sequences and unaligned loads.

5.2 Stencil Codes

We evaluated the use of the dimension-lifting layout transformation on seven stencil
benchmarks, briefly described below.

Jacobi 1/2/3D The Jacobi stencil is a symmetric stencil that occurs frequently both in
image processing applications as well as with explicit time-stepping schemes in PDE
solvers. We experimented with one-dimensional, 2D, and 3D variants of the Jacobi sten-
cil, and used the same weight for all neighbor points on the stencil and the central point.

In the table of performance data below, the 1D Jacobi variantis referred as J-1D. For
the 2D Jacobi stencil, both a five point “star” stencil (J-2D-5pt) and 9 point “box”(J-2D-
9pt) stencil were evaluated A seven point “star” stencil (J-3D-9pt) was used to evaluate
performance of Jacobi 3D code.

Heattut 3D This is a kernel from the Berkeley stencil probe and is based on a discretiza-
tion of the heat equation PDE.[17].

FDTD 2D This kernel is the core computation in the widely used FiniteDifference Time
Domain method in Computational Electromagnetics [34]

Rician Denoise 2DThis application performs noise removal from MRI images andin-
volves an iterative loop that performs a sequence of stenciloperations.

Problem SizesWe assume the original program is tiled such that the footprint of a tile
does not exceed the L1 cache size, thus all arrays are sized tofit in the L1 data cache.
As is common for stencil codes, for each of the benchmarks, there is an outer loop
around the stencil loops, so that any one-time layout transformation cost to copy from
an original standard array representation to the transformed representation involves a
negligible overhead.

Code versionsFor each code, three versions were tested:
– Reference, compiler auto-vectorized
– Layout transformed, compiler auto-vectorized
– Layout transformed, explicitly vectorized with intrinsics

Vector intrinsic code generation Vector intrinsic code generation is based on the pro-
cess shown in Figure 6. An outline of the steps in code generation is provided next.

Convert stencil statement(s) into intrinsic equivalentsWe convert C statements into
vector intrinsic equivalents. For example, consider the following 3 point 1D Jacobi state-
ment:
a[i] = b[i-1] + b[i] + b[i+1];
This statement can be expressed in SSE intrinsics:
adlt[i] = mm add ps( mm add ps(bdlt[i-1],bdlt[i), bdlt[i+1]);
Note thatdlt suffixed arrays have been layout transformed.



Generate boundary codeThe reuse distance information obtained with the framework
of Section 4 above is used to generate boundary code from the intrinsic statements. This
code contains the appropriate shifts and masked stores required to maintain program
correctness.

Generate intrinsic steady state codeAgain, reuse distance information is used to gener-
ate a vector intrinsic inner loop. This loop, along with boundary code, replaces the orig-
inal inner loop. Finally, well-known loop unrolling and register blocking optimizations
are performed. It is interesting to note that unrolling the vanilla C versions of the codes
did not improve performance (in many cases impacted performance negatively), while
unrolled versions of the vector intrinsic code resulted in performance improvement.

5.3 Results

Absolute performance and relative improvement for single and double precision ex-
periments across all platforms and codes are given in Figure10. Intel C Compiler icc
v11.1 with the ‘-fast’ option was used for all machines.Vectorization pragmas were
added to the inner loops of reference and layout transformedcodes to force ICC auto-
vectorization.

Phenom Core2 Quad Core i7
SP DP SP DP SP DP

GF/s Imp. GF/s Imp. GF/s Imp. GF/s Imp. GF/s Imp. GF/s Imp.

J-1D
Ref. 4.27 1.00× 3.08 1.00× 3.71 1.00× 2.46 1.00× 8.67 1.00× 3.86 1.00×
DLT 7.68 1.80× 3.79 1.23× 9.42 2.54× 2.83 1.15× 10.551.22× 4.01 1.04×
DLTi 11.382.67× 5.71 1.85× 13.953.76× 7.01 2.85× 15.351.77× 7.57 1.96×

J-2D-5pt
Ref. 6.96 1.00× 2.71 1.00× 3.33 1.00× 2.94 1.00× 8.98 1.00× 4.54 1.00×
DLT 9.00 1.29× 3.75 1.38× 8.86 2.66× 4.58 1.56× 10.201.14× 5.18 1.14×
DLTi 11.311.63× 5.67 2.09× 11.583.48× 5.85 1.99× 13.121.46× 6.58 1.45×

J-2D-9pt
Ref. 4.48 1.00× 3.21 1.00× 4.21 1.00× 2.72 1.00× 8.30 1.00× 4.11 1.00×
DLT 7.71 1.72× 3.81 1.18× 8.04 1.91× 4.08 1.50× 10.231.23× 5.23 1.27×
DLTi 12.262.74× 6.11 1.90× 12.012.85× 6.03 2.22× 13.621.64× 6.80 1.65×

J-3D
Ref. 6.01 1.00× 2.90 1.00× 6.07 1.00× 3.04 1.00× 9.04 1.00× 4.64 1.00×
DLT 6.84 1.14× 3.73 1.29× 8.07 1.33× 4.25 1.40× 9.46 1.05× 5.02 1.08×
DLTi 10.081.68× 5.36 1.85× 10.361.71× 5.31 1.75× 12.021.33× 6.04 1.30×

Heatttut-3D
Ref. 6.06 1.00× 3.02 1.00× 6.64 1.00× 3.29 1.00× 8.75 1.00× 4.55 1.00×
DLT 7.12 1.18× 3.36 1.11× 8.71 1.31× 4.45 1.35× 9.99 1.14× 4.91 1.08×
DLTi 9.59 1.58× 5.12 1.70× 8.86 1.33× 4.45 1.35× 11.991.37× 6.05 1.33×

FDTD-2D
Ref. 5.86 1.00× 3.26 1.00× 6.42 1.00× 3.35 1.00× 8.72 1.00× 4.34 1.00×
DLT 6.89 1.18× 3.65 1.12× 7.71 1.20× 4.03 1.20× 8.91 1.02× 4.73 1.09×
DLTi 6.64 1.13× 3.41 1.05× 8.03 1.25× 4.03 1.20× 9.74 1.12× 4.82 1.11×

Rician-2D
Ref. 3.29 1.00× 1.93 1.00× 1.87 1.00× 1.27 1.00× 3.98 1.00× 2.16 1.00×
DLT 3.46 1.05× 2.40 1.25× 2.59 1.39× 1.27 1.00× 4.13 1.04× 2.23 1.03×
DLTi 8.09 2.46× 2.56 1.33× 8.50 4.55× 1.27 1.00× 11.312.84× 2.23 1.03×

Fig. 10. Summary of experimental results. Ref is the unoptimized, auto-vectorized version. DLT
is the layout transformed, auto-vectorized version. DLTi is the layout transformed version imple-
mented with vector intrinsics.

Double Precision Double precision results are shown in columns labeled DP of Fig-
ure 10. Significant performance gains are achieved across all platforms and on all bench-
marks.

ICC auto-vectorized DLT code equaled or improved upon reference code perfor-
mance in all cases. The harmonic means of relative improvements across all double pre-
cision benchmarks on x86-64 were 1.10× (Core i7), 1.22× (Phenom), and 1.28× (Core



2 Quad). Individual benchmark improvements range from, worst case, 1.00× (2D Rician
Denoise on Core 2 Quad) to a best case of 1.56× (5 point 2D Jacobi on Core 2 Quad).

The auto-vectorized layout transformed code was fast but certain areas of it were still
very inefficient. While ICC automatically unrolled the innerloop of reference code, no
such unrolling was done for the layout transformed code. Further, ICC generated long
sequences of scalar code for boundary computations.

These deficiencies were addressed in the intrinsic versionsof the codes. Scalar bound-
ary code was replaced with much more efficient vector code, and all inner loops were
unrolled. Further gains can be also be attributed to register blocking and computation
reordering.

Intrinsic codes equaled or improved upon auto-vectorized versions in all cases, with
a worst case improvement equal to reference (2D Rician Denoise on Core 2 Quad) and
best case of 2.85× (Jacobi 1D on Core 2 Quad). Harmonic means of improvements over
reference were 1.35× (Core i7), 1.60× (Phenom), and 1.57× (Core 2 Quad).

Single Precision While most scientific and engineering codes use double precision for
their computations, several image processing stencils usesingle precision. With the cur-
rent SSE vector ISA, since only two double precision elements can fit in a vector, ac-
celeration of performance through vectorization is much less than with single precision.
However, the increasing vector size of emerging vector ISAssuch as AVX and LRBni,
imply that the performance improvement currently possiblewith single precision SSE
will be similar to what we can expect for double precision AVX, etc. For these reasons
we include single precision performance data for all benchmarks.

Significant single precision performance gains are achieved across all platforms and
on all stencils. They are reported in Figure 10 under theSP columns.

Layout transformed code auto-vectorized by ICC ran significantly faster than refer-
ence code on all platforms. The harmonic means of relative performance improvements
across all benchmarks on x86-64 were 1.11× (Core i7), 1.29× (Phenom), and 1.61×
(Core 2 Quad). Individual benchmark improvements range from, worst case, 1.02× (2D
FDTD on Core i7) to a best case of 2.66× (5 point 2D Jacobi on Core 2 Quad).

Vector intrinsic code optimizations again further increased the performance gains
seen for auto-vectorized layout transformed code. All intrinsic codes were substantially
faster than their corresponding auto-vectorized versions. Minimum relative improvement
over reference on x86-64 was 1.12× (2D FDTD on Core i7) while maximum relative
improvement was 4.55× (2D Rician Denoise on Core 2 Quad). Harmonic means of
improvements over reference were 1.53× (Core i7), 1.81× (Phenom), and 2.15× (Core
2 Quad).

Discussion Performance gains for all x86-64 codes can be attributed to the elimination
of costly intra-register movement, shuffle, and unaligned load instructions from inner
loop code.

The performance gains on Core i7, while significant, were consistently the small-
est of any platform tested. This is partly explained by the relatively small performance
penalty associated with unaligned loads and shuffle on this CPU. Still, the DLT intrin-
sic versions achieve a 1.53× average performance improvement for single precision and
1.35× for double precision codes on this platform. In contrast, the KentsfieldCore 2
Quad, demonstrates consistently large performance improvements from layout transfor-
mation. This can mainly be attributed to poorly performing vector shuffle hardware.

Generally speaking, 1D Jacobi showed both the largest performance gains, and the
fastest absolute performance, while higher dimensional stencils showed smaller, but still



significant improvement. Higher dimensional stencils havemore operands and more
intra-stencil dependences. This leads to higher register occupancy, higher load / store
unit utilization, and more pipeline hazards / stalls for these codes. This combination of
factors leads less improvement with respect to the 1D case. General and application-
specific optimizations based on the data layout transformation described in this work
could likely achieve higher performance through careful instruction scheduling and tun-
ing of register block sizes to address these issues.

6 Related Work

A number of works have addressed optimizations of stencil computations on emerging
multicore platforms [7], [16], [17], [6], [27], [26], [11],[37], [10], [4], [9], [40], [38],
[41], [8], [39]. In addition, other transformations such astiling of stencil computations
for multicore architectures have been addressed in [43], [25], [21], [34]. Recently, mem-
ory customization for stencils has been proposed in [36].

Automatic vectorization has been the subject of extensive study in the literature [19,
42]. There has been significant recent work in generating effectice code for SIMD vector
instruction sets in the presence of hardware alignment and stride constraints as described
in [12, 44, 45, 31, 13]. The difficulties of optimizing for a wide range of SIMD vector ar-
chitectures are discussed in [29, 14]. In addition, severalother works have addressed the
exploitation of SIMD instruction sets [22, 24, 23, 30, 32, 31, 28]. All of these works only
address SIMD hardware alignment issues. The issues of algorithmic stream alignment
addressed in this paper are distinctly different from the problem addressed in those works
and the dimension-lifted transposition solution that we have developed has a significant
impact on performance even on SIMD architectures where hardware misalignment does
not significantly degrade performance.

Stream alignment shares a lot similarties with array alignment in data-parallel lan-
guages [2, 5, 20] and several related works. None of these works, however, considered
dimension-lifted transposition of accessed arrays. Therehas been prior work attempting
to use static linear data layout optimizations (such as permutations of array dimensions)
to improve spatial locality in programs [33, 18]. These works do not address dimension-
lifted transposition. Rivera and Tseng [35] presented datapadding techniques to avoid
conflict misses. Recently, linear data layout transformations to improve vector perfor-
mance have been proposed [15].

To avoid conflict misses and false sharing, Amarasinghe’s work [3] maps data ac-
cessed by a processor to contiguous memory locations by using strip-mining and permu-
tation of data arrays. In contrast, our approach attempts remap data in order to spread out
reuse carrying data in the innermost loops in order to have them map to the same vector
register slot; this avoids alignment conflicts and eliminates the need for extra loads or
inter- and intra-register data movement.

7 Conclusions

This paper identifies, formalizes and provides an effectivesolution for a fundamental
problem with optimized implementation of stencil computations on short-vector SIMD
architectures. The issue of stream alignment conflicts was formalized and a static analy-
sis framework was developed to identify it. A novel nonlinear data layout transformation
was proposed to overcome stream alignment conflicts. Experimental results on multiple
targets demonstrate the effectiveness of the approach on a number of stencil kernels.
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