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Abstract. Stencil computations are at the core of applications in many domains
such as computational electromagnetics, image processing, and gdféigdn-

tial equation solvers used in a variety of scientific and engineering apphsatio
Short-vector SIMD instruction sets such as SSE and VMX provide a piognis
and widely available avenue for enhancing performance on modenegsors.
However a fundamental memory stream alignment issue limits achievéat-pe
mance with stencil computations on modern short SIMD architectureékidpa-

per, we propose a novel data layout transformation that avoids therstbgn-
ment conflict, along with a static analysis technique for determining where this
transformation is applicable. Significant performance increaseseanernstrated

for a variety of stencil codes on several modern processors witbSpabilities.

1 Introduction

Short vector SIMD extensions are included in all major hpgitformance CPUs. While
ubiquitous, the ISA and performance characteristics vemynfvendor to vendor and
across hardware generations. For instance, Intel hasglintenl SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AVX, and LRBni ISA extensions over the ya&fith every processor,
the latency and throughput numbers of instructions in tleedensions change. IBM,
Freescale, and Motorola have introduced AltiVec, VMX, VM28l VSX, Cell SPU,
PowerXCell 8i SPU SIMD implementations. In some instand@sagdRunner, Blue-
Gene/L), custom ISA extensions were designed since thesupeuting installation
was big enough to warrant such an investment. These extenprovide from 2-way
adds and multiplies up to 16-way fused multiply-add operetj promising significant
speed-up. Itis therefore important to optimize for thesemsions.

Stencil computations represent an important class, aogumimany image process-
ing applications, computational electromagnetics andtigwl of PDEs using finite dif-
ference or finite volume discretizations. There has beesiderable recent interest in
optimization of stencil computations [7], [6], [16], [11R7], [26], [11], [37], [10], [4],
[9], [40], [38], [41], [8], [39], [43], [25], [21], [34]. In his paper, we focus on the prob-
lem of optimizing single-core performance on modern prsceswith SIMD instruction
sets. Stencil computations are readily expressible inra feith vectorizable innermost
loops where arrays are accessed at unit stride. Howevdglasrated upon later, there is
a fundamental performance limiting factor with all currehort-vector SIMD instruction
sets such as SSE, AVX, VMX, etc. We formalize the problemubgtothe abstraction
of stream alignment conflicts. We note that the alignmenflimrissue we formulate
and solve in this paper pertains to algorithmic alignmemist@ints and is distinctly
different from the previously studied topic of efficient @deneration on SIMD archi-
tectures with hardware alignment constraints [22,12,3},\Ve address the problem



of resolving stream alignment conflict through the novel ofsa nonlinear data layout
transformation and develop a compiler framework to idgraiid suitably transform the
computations.

for (t = 0; t < T; ++t) { for (t = 0; t < T; ++t) {
for (i = 0; i < N; ++i) for (i = 0; i < N; ++i)
for (j = 1; j < N+1; ++j) for (j = 0; j < N; ++j)
S1: CLil[j1 = A[i1[j] + A[il[j-11; | s3: Clil[3j1 = A[i1[3]1 + BLi1[j];
for (i = 0; i < N; ++i) for (i = 0; i < Nj; ++i)
for (j = 1; j < N+1; ++j) for (j = 0; j < Nj; ++j)
82: AC[i1[3] = Clil[j1 + C[il[j-11; | s4: A[i103] = BLE1 031 + Clil[jd;
} }
AMD Phenom 1.2 GFlop/s AMD Phenom 1.9 GFlop/s
Performance: Core2 3.5 GFlop/s Performance: Core2 6.0GFlop/s
Core i7 4.1 GFlop/s Core i7 6.7 GFlop/s
(a) Stencil code (b) Non-Stencil code

Fig. 1. Example to illustrate addressed problem: The stencil code (a) has muehgderformance
than the non-stencil code (b) despite acccessing 50% fewer data &emen

We use a simple example to illustrate the problem addreszausider the two sets
of loop computations in Fig. 1(a) and Fig. 1(b), respectivélith the code shown in
Fig. 1(a), for each of the two statements; R?+ N distinct data elements are referenced,
with N2 elements o€ andN?+ N elements ofA being referenced in S1, aif elements
of AandN?+ N elements o€ being referenced in S2. With the code shown in Fig. 1(b),
each of S3 and S4 access 812 distinct data elements, so that the code accesses around
1.5 times as many data elements as the code in Fig. 1(a). Bd#sacompute exactly
the same number (2N?) of floating point operations. Fig. 1 shows the achievedlsing
core performance of the two codes on three different arctuites, compiled using the
latest version of ICC with auto-vectorization enabled. #ynbe seen that on all systems,
the code in Fig. 1(b) achieves significantly higher perfanoealthough it requires the
access of roughly 50% more data elements.

As explained in the next section, the reason for the lowefiop@ance of the stencil
code in Fig. 1(a) is that adjacent data elements (stored jasead words in memory)
from arrays A and C must be added together, while the dataegltnthat are added
together in the code of Fig. 1(b) come from independent arrlaythe latter case, we
can view the inner loop as representing the addition of spoading elements from
two independent strean®{i] [0:N-1] andC[i] [0:N-1], but for the former, we are
adding shifted versions of data stream$i] [0:N-1], A[i][1:N], C[i]l[0:N-1],
andcC[i] [1:N]. Loading vector registers in this case requires use ofef)eedundant
loads, where a data element is moved with a different loaddoh distinct vector register
position it needs to be used in, or (b) load operations fadidwy additional inter- and
intra-register movement operations to get each data elemtnthe different vector
register slots where it is used. Thus the issue we addresstiisodly different from the
problem of hardware alignment that has been addressed imbearwof previous works.
The problem we address manifests itself even on archiestunere hardware alignment
is not necessary and imposes no significant penalty (as émnpbe the recent Intel Core
i7 archirecture).

In this paper, we make the following contributions:

— We identify a fundamental performance bottleneck for stesmmputations on all
short-vector SIMD architectures and develop a novel agbraa overcoming the
problem via data layout transformation.



— We formalize the problem in terms of stream alignment cotsflend present a
compile-time approach to identifying vectorizable congtigins that can benefit
from the data layout transformation.

— We present experimental results on three target platfdmatsiemonstrate the effec-
tiveness of the transformation approach presented in #pemp

To the best of our knowledge, this is the first work to idengéifid formalize this problem
with algorithmicstream alignment conflicts and provide a solution to it.

The paper is structured as follows. In the next section, wearhte on the addressed
problem. In Sec. 3, we provide an overview of the data lay@nsformation approach
through examples. Sec. 4 presents the formalization angit®time analysis for de-
tecting stream alignment conflicts. Sec. 5 presents expatah methodology and re-
sults. Related work is covered in Sec. 6 and we conclude inSec

2 Background and Overview of Approach

2.1 lllustrative Example

The reason for the significant performance difference betvtbe two codes shown in
Sec. 1, is that one of them (Fig. 1(a)) exhibits what may bledatream alignment con-
flict, while the other (Fig. 1(b)) is free of such conflicts. Wherain alignment conflicts
exist, the compiler must generate additional loads or -rggister data movement in-
structions (such as shuffles) in order to get interacting degments into the same vector
register positions before performing vector arithmetiergpions. These additional data
movement operations cause the performance degradationirs€ég. 1. Fig. 2 shows
the x86 assembly instructions generated by the Intel ICCpilemon a Core 2 Quad
system for code similar to that in Fig. 1(a), along with angtkation of the grouping of
elements into vectors. The first four iterations of innemplgoperform addition on the
pairs of element$B[0] ,B[1]), (B[1],B[2]), (B[2],B[3]1), and(B[3],B[4]).
Four single-precision floating-point additions can be gernied by a single SSE SIMD
vector instruction 4ddps), but the corresponding data elements to be added must be
located at the same position in two vector registers. Toraptish this, ICC first loads
vectorsB[0:3] andB[4:7] into registers xmml and xmm2. Next, a copy of vector
B[4:7] is placed into register xmm3. Registers xmm1 and xmm3 ane toenbined
with thepalignr instruction to produce the unaligned veckdn : 4] in register xmma3.
This value is used by theddps instruction to produce an updated value £d10:3] in
xmma3. Finally, an aligned store updateg0:3]. The vectoB[4:7] in register xmmz2

is ready to be used for the updatead# : 7].

2.2 Stream Alignment Conflict

We now use a number of examples to explain the issue of strigginmeent conflicts. Be-
fore we proceed, we reiterate that the issue we address isssfammlamental algorithmic
data access constraint and is not directly related to théwsae alignment restrictions
and penalties on some SIMD instruction set architecturesekample, on IBM Power
series architectures using the VMX SIMD ISA, vector loadd atores must be aligned
to quadword boundaries. On x86 architectures, unalignetbrvéads/stores are permit-
ted but may have a significant performance penalty, as ondhe Zarchitecture. On the
more recent Core i7 x86 architecture, there is very littleghy for unaligned loads ver-
sus aligned loads. The performance difference on the Calkdi#n in Fig. 1, however,



for (1 = 0; i < H; i++)
for (j =0; jJ <W-1; j++4)

A[i][3j] = BIi][3] + BLi]l[j+1];
MEMORY CONTENTS
» [efefefol=fe e e ][]
"""" \
» G e ]
VECTOR REGISTERS x86 ASSEMBLY

movaps B(...), $xmml
xmml movaps 16+B(...),$xmm2

movaps $xmm2, Sxmm3
palignr $4, %xmml, %xmm3

;i Register state here
xmm2 M| N . N .
addps %xmml, %xmm3

movaps $xmm3, A(...)

xmm3 | J | K| L | M

Fig. 2. lllustration of additional data movement for stencil operations

provides evidence that the problem we address is a morefugntal algorithmic align-
ment issue. While hardware alignment restrictions/peggltin a target platform may
exacerbate the problem with stream alignment conflictsptbblem exists even if an
architecture has absolutely no restrictions/penaltieatfialigned loads/stores. The work
we present in this paper thus addresses a distinctly diffgn@blem than that addressed
by many other works on optimizing code generation for SIMDtee architectures with
hardware alignment constraints.

Vectorizable computations in innermost loops may be viesgeoperations on streams
corresponding to contiguous data elements in memory. Timpatation in the inner loop
with statement S1 in Fig. 1(b) performs the computatién] [0:N-1] =A[i] [0:N-1]+
B[i] [0:N-1], i.e. the stream of N contiguous data elemeiits] [0:N-1] is added to
the stream of N contiguous elemeBtsi] [0:N-1] and the resulting stream is stored in
C[0] [0:N-1]. In contrast, the inner loop with statement S1 in Fig. 1(alsadi] [1:N]
andA[i] [0:N-1], where these two streams of length N are subsets of the samaenst
ATi] [0:N] of length N+1, but one is shifted with respect to the other bg element.
When such shifted streams are computed upon using curretaobor SIMD architec-
tures, although only N+1 distinct elements are accessedngally 2x N data moves are
required (either through additional explicit loads or irtegister data movement opera-
tions like shuffles). The extra moves are required becausizedhherent characteristic
of short-vector SIMD instructions that only elements inregponding slots of vector
registers can be operated upon.

While in the example of Fig. 1(a) the stream alignment coniliepparent because
the misaligned streams arise from two uses of the same arrtheisame statement,
the same underlying conflict may arise more indirectly, lasttated by the example of
Fig. 3.

In Fig. 3(a), the stream computations corresponding tatheriloopj areA [i] [0:N]
= B[i] [0:N]+C[i] [0:N] for S3 andD[i] [0:N] = A[i] [0:NI+C[i] [0:N] for S4.
Streamsi[i] [0:N] andC[i] [0:N] are used twice, but all accesses are mutually aligned.



for (i = 0; i < N+1; ++i) for (i = 0; i < N+1; ++i)

for (j = 0; j < N+#1; ++j) { for (j = 0; j < N+1; ++j) {
S3: A[i]1[3] = BLi][j] + Clil[j]; S5: A[i1[3] = BLi1[3] + Clil[j];
S4: D[il1[3j] = A[i1[j]1 + Clil[j]; S6: ) D[il[j] = A[i1[j] + CLil[j+1];
(a) No stream alignment conflict ‘ (b) Stream alignment conflict exists

for (i = 0; i < N+1; ++i)
for (j = 0; j < N+1; ++j) {
S7: A[i1(31 = BL41[j1 + Cclil(jl;
S8: ) Clil[3] = A[i1[31 + DLil[j+1];

(c) No stream alignment conflict

Fig. 3. lllustration of indirect occurrence of stream alignment conflict

With the example shown in Fig. 3(b), however, the stream agatpns corresponding to
the innerj loop areA[i] [0:N] = B[i] [0:N]+C[i] [0:N] for S5 andD[i] [0:N] =
A[i] [0:N]+C[i] [1:N+1] for S6. Here we have a fundamental stream alignment con-
flict. If A[i] [0:N] andC[i] [0:N] are aligned together for S5, there is a misalignment
betweenA[i] [0:N] andC[i] [1:N+1] in S6. Finally, there is no stream alignment
conflict in Fig. 3(c) since the same alignmentAdfi] [0:N] with C[i] [0:N] is needed
for both S7 and S8.

The abstraction of stream alignment conflicts is applicatith more general ar-
ray indexing expressions, as illustrated by the examplésgn4. In Fig. 4(a), there is
no stream alignment conflict. In S9, streaBisi] [1:i+N] andB[i+1] [i:i+N] (the
second and third operands) need to be aligned. Exactly the aignment is needed be-
tween these streams in S10 (the first opeiid [i+1:i+N+1] and the second operand
Bli+1] [i+1:i+N+1]).

for (i = 1; i < N+1; ++i) for (i = 1; i < N+1; ++i)
for (j = 0; j < N+1; ++j) { for (j = 0; j < N+1; ++j) {
$9:  A[il[j]1 = Bli-11[i+j] + St1:  A[il[j] = BLi-11[i+j+1] +
BL i J[i+j] + B[ i l[i+j 1 +
Bli+1] [i+j1; Bli+1] [i+j+1];
S10:  A[i+11[j] = B[ i J[i+j+1] + S12:  A[i+11[j] = B[ i J[i+j+2] +
Bli+1] [i+j+1] + BLi+1] [i+j+1] +
B[i+2] [i+j+1]; B[i+2] [i+j+2];
} }
(a) No stream alignment conflict | (b) Stream alignment conflict exists

Fig. 4. lllustration of stream alignment conflict with general array indexing esgions

In contrast, in Fig. 4(b) a fundamental algorithmic stredigranent conflict ex-
ists with the reused streams in S11 and S12. In S11, the sB&ahii:i+N] (second
operand) must be aligned wis{i+1] [i+1:i+N+1] (third operand), but in S12 stream
B[i] [i+2:i+N+2] (first operand) must be aligned wiB{i+1] [i+1:i+N+1] (second
operand). Thus the required alignments between the retieadrs in S11 and S12 are
inconsistent — a +1 shift oB[i] [x:y] relative toB[i+1] [x:y] is needed for S11
but a -1 shift ofB[i] [x:y] relative toB[i+1] [x:y] is needed for S12 i.e., a stream
alignment conflict exists.

A formalization and algorithm for compile-time charactation of the occurrences
of stream alignment conflicts is developed in Sec. 4. Befoowiding those details,



we present a novel approach through data layout transfaomad avoid performance
degradation due to stream alignment conflicts.

3 Data Layout Transformation

In this section, we show how the poor vectorization resglfirom stream alignment
conflicts can be overcome through data layout transforma#ie explained in the previ-
ous section using Fig. 2, the main problem is that adjacemehts in memory map to
adjacent slots in vector registers, so that vector operstipon such adjacent elements
cannot possibly be performed without either performingtheoload operation from
memory to vector register or performing some inter-regidgta movement. The key
idea behind the proposed data layout transformation is dtergially interacting data
elements to be relocated so as to map to the same vectoeresit

3.1 Dimension-Lifted Transposition

We explain the data layout transformation using the examplEig. 5. Consider a
one dimensional array Y with 24 single-precision floatingnpalata elements, shown
in Fig. 5(a), used in a computation with a stream alignmemiflex, such asz[i] =
Y[i-1] + Y[i] + Y[i+1].

Fig. 5(b) shows the same set of data elements from a diffeygittal view, as a two-
dimensional 4x 6 matrix. With row-major ordering used by C, such a 2D matri w
have exactly the same memory layout as the 1D matrix Y. Fig). &ifows a 2D matrix
that is the transpose of the 2D matrix in Fig. 5(b), i.e., aatision-lifted transpose of
the original 1D matrix in Fig. 5(a). Finally, Fig. 5(d) showslD view of the 2D matrix
in Fig. 5(c).

It can be seen that the data elements A and B, originally éolcimt adjacent memory
locations Y[0] and Y[1], are now spaced farther apart in mgmiooth being in column
zero but in different rows of the transposed matrix shownig B(c). Similarly, data
elements G and H that were adjacent to each other in the atilgipout are now in the
same column but different rows of the dimension-lifted swsed layout. The layout
in Fig. 5(c) shows how elements would map to slots in vectgisters that hold four
elements each. The computation of A+B, G+H, M+N, and S+T eapdsformed using a
vector operation after loading contiguous elements [A,&Mnd [B,H,N,T] into vector
registers.

3.2 Stencil Computations on Transformed Layout

Fig. 6 provides greater detail on the computation using taesformed layout after a
dimension-lifted transposition. Again, consider thedaling computation:

shi RO - VL) LAl e YOeels
Sixteen of the twenty two instances of statem8htcan be computed using full vec-
tor operations: [A,G,M,S] + [B,H,N,T] + [C,I,0,U]; [B,H,N}] + [C,I,O,U] + [D,J,P,V];
[C,,0,U] +[D,J,P,V] + [E,K,Q,W]; and [D,J,P,V] + [E,K,Q,W] {F,L,R,X]. In Fig. 6,
these fully vectorized computations are referred to asgteatly state”. Six statement in-
stances (computing E+F+G, F+G+H, K+L+M, L+M+N, Q+R+S, antdRT) represent
“boundary” cases since the operand sets do not constitliteefttors of size four. One
possibility is to perform the operations for these boundzages as scalar operations,
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Fig. 5. Data layout transformation for SIMD vector length of 4
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Fig. 6. lllustration of steady state and boundary computation

however, it is possible to use masked vector operationsrfonpethem more efficiently.
Fig. 6 illustrates the boundary cases corresponding toasiésrat the top and bottom
rows in the transposed layout.

At the top boundary, a “ghost cell” is created by performinggat-shift to the bot-
tom row vector [F,L,R,X] by one position to align [X,F,L,Rbave [A,G,M,S]. The vec-
tor operation [X,F,L,R]+[A,G,M,S]+[B,H,N,T] is then pesfmed and a masked write is
performed so that only the last three components of thetrgsator get written. The
bottom boundary is handled similarly, as illustrated in.fig

Higher order stencils simply result in a larger boundanaaFairther, the dimension-
lifted transpose layout transformation can be applied s same manner for multi-
dimensional arrays, as illustrated in Fig. 7. The fastesying dimension (rightmost
dimension for C arrays) of a multi-dimensional array is sghgd to dimension-lifting
and transposition (with padding if the size of that dimeng®not a perfect multiple of



(a) Original Layout

n0 nl n2 n3
wO0[c0|e0 wlicliel w2|c2|e2 w3|c3le3
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(b) Transformed Layout

N R o

w0 |wl w2 w3
n0(nl|n2(n3 cO|cl|c2|c3 s0|sl{s2|s3
ellel|e2|e3

0 1 2

Fig. 7. lllustration for 2D 5-point stencil

vector length). Fig. 7 highlights a set of array locationsesmsed by a 2D 5-point stencil
computation on a four wide vector architecture.

In the following section, we present a compiler frameworlatdomatically detect
where dimension lifting can be used to overcome the perfoomdoss due to stream
alignment conflicts.

4 Framework for Stream Alignment Conflict Detection

Stream alignment conflicts often occur when vectorizingateomputations, as shown
in the examples of Section 2. Our goal in this section is teetgycompiler algorithms

for detecting stream alignment conflicts. Note that strehgmaent conflict is not lim-

ited to stencil computations; therefore, dimension-ifteansposition is useful for a more
general class of programs. In this paper, we limit the disiomsto vectorizable innermost
loops. We assume that high-level transformations to expasalel innermost loops that
are good vectorization candidates have already been dppliee code [1]. The first task
is to collect all vectorizable innermost loops. Some caod# must hold for our analysis
to be performed: (1) all memory references are either ssalaaccesses to (multidi-
mensional) arrays; (2) all dependences have been identiiet(3) the innermost loop
variable has a unit increment. Note that our framework hesdhrolled loops as well;
for ease of presentation, we will assume a non-unrollecessptation of unrolled loops.

4.1 Program Representation

We first define our representation of candidate loops to blyzed The objective is to
detect (a) if a loop is vectorizable, and (b) if it has a stredignment conflict that can
be resolved using dimension-lifted transposition of asedsarrays. We operate on an
abstract program representation that is independent gbribgramming language and
analyze the memory references of candidate innermost.loops



Innermost loopsinnermost loops are the only candidates we consider foovigetion
after dimension-lifted transposition of arrays. As stagadlier, we assume that such
loops have a single induction variable that is incrementedrie in each iteration of the
loop. This is required to ensure the correctness of the sisalye use to characterize
the data elements accessed by an innermost loop. We alsceréigiinnermost loops to
have a single entry and exit point, so that we can precisasriahine where to insert the
data layout transformation (i.e., dimension-lifted tqamsition) code.

Memory referencesA loop contains a collection of memory references. All dd& e
ments accessed by any given iteration of the loop must hieatsitcharacterized by an
access functiorf of the enclosing loop indices and other parameters. Forengxecu-
tion of the loop whose iterator i, all function parameters besidemust be constant.
f can be multidimensional for the case of an array referenith, ame dimension irf
for each dimension of the array. For instance, for the refe@B[i] [alpha+M*j] with
innermost loop iteratoy, the access function i (j) = (i,al pha+ M.j).

4.2 Candidate Vector Loops

Dimension-lifted transposition may be useful only for ggaeferenced in vectorizable
loops. We now provide a simple compiler test to determinectvininer loops are candi-
dates for vectorization, based on data dependence anafytbis program. Specifically,
we require a candidate innermost loop to meet the followimgstraints: (1) the loop
does not have any loop-carried dependence; and (2) two catinse iterations of the
loop access either the same memory location or two locatisaisare contiguous in
memory, i.e., the loop has either stride-zero or strideamoesses.

Loop-carried dependencesTo determine if a loop is parallel, we rely on the standard
concept of dependence distance vectors [19]. There is andepee between two itera-
tions of a loop if they both access the same memory locatiomae of these accesses
is a write. If there is no loop-carried dependence, thendbp Is parallel.

We now define the concept ofaray-distance vectobetween two references, re-
stricted to the inner loop (all other variables are assunoedtant).

Definition 1 (Array-Distance Vector between two references Consider two access
functions £ and 2 to the same array of dimension n. Let 1 and be two iterations
of the innermost loop. The array-distance vector is defiretha n-dimensional vector

8(1,11) 11,42 = f20) — f2(1).

Let us illustrate Definition 1 with two referencagil [j]1 andA[i-1] [j+1], en-
closed by loop indicesand j with j as the innermost loop iterator. We haidg j) = (i, j)
andf2(j) = (i—1,j+1). The array-distance vector is

3(], j/)f&,fg =(1j-j-1)
A necessary condition for the existence of a dependenceddy the innermost
loop is stated below.

Definition 2 (Loop-carried dependence)There exists a dependence carried by the in-
nermost loop between two referencelsand f2, at least one of which is a write to
memory, if there exists# 17 such that(1,17) 12 =0.

1 The case of vectorizing reductions is not addressed here.



Note thatd(1,17) 112 requires the values of loop iterators other than the innetmo
loop to be fixed. Also, whe®(1,1/) 1112 the difference between the access functions,
still contains symbols beyond the inner-loop iterator (&9, 1) iz = (k,alpha)) we

conservatively assume a loop-carried dependence unkesaltie of the symbols can be
determined statically.

Stride-one memory accesse$he second condition for a loop to be a SIMD-vectorization
candidate is that all memory accesses are such that two @diveeiterations access
either consecutive memory locations or an identical lacgtfor all iterations of the
innermost loop.

To test for this property, we operate individually on eacbess function. Memory
references that always refer to the same location for allesabf the innermost loop
are discarded: they are the equivalent to referencing arseatiable. For each of the
remaining references, we form the array-distance vectovd®n two consecutive iter-
ations, and ensure the distance between the two locatioeguial to 1. For the case
of multidimensional arrays, for the distance in memory tdlbéhe array-distance vec-
tor must have a zero value in all but the last dimension wheneust be one. This is
formalized as follows:

Definition 3 (Stride-one memory access for an access functih Consider an access
function fx surrounded by an innermost loop. It has stride-one acce$s, ib(1,1+
1)fA,fA = (077071)

For example, considex[i] [j] surrounded by the innermostloop. fa = (i, j) and
0(j, ]+ 1), 1, = (0,1). Hence thej loop has stride-one access ffyr as above. Let us
suppose that for the sanfg, loopi is the innermost loop; in this case, we would have
o(i,i + 1)+, 1, = (1,0) which does not satisfy the condition in Definition 3. Therefo
loopi does not have stride-one access with respetj.to

4.3 Detection of Stream Alignment Conflict

A stream alignment conflict occurs when a given memory locais required to be

mapped to two different vector slots. So, it follows that ifremory element is not
used twice or more during the execution of the innermost,ltiegn a stream alignment
conflict cannot occur. If some memory element is reused, 6hemcases apply: either
the element is reused only during the same iteration of thermost loop, or it is used
by another iteration of the innermost loop. Stream alignineenflict can occur only for

the latter; if the element is reused during the same iterattds mapped to the same
vector slot and there is no stream alignment conflict.

Cross-iteration reuse due to distinct referencesOur principle to detect if a given
memory location is being referenced by two different itienad follows the concept of
loop-carried dependence, but we extend nowltgairs of references and not limit to
those containing a write operation.

For a given innermost loop, we thus compute the array-distamctor for all pairs
of distinct references! and f2 to the same array, and see if there exists two distinct
iterations such that

3(1,11) 142 =0



Consider the example of Figure 8(a). For the casélof (i, j +1) and f3 = (i, j), we
can determine if there is cross-iteration reuse by formirgdonstrain®(j, j,)fBlA,fg =

(0, j+1— jr) and solving the system of constraints

s:{ 02§

j+1—jr=0

SinceS has a solution, there is cross-iteration reuse in the inastioop. Technically,
the presence of a solution is only a necessary condition for cross-iteration reuse.
Some cases of cross-iteration reuse may not be detectechltypwvhen distinct vari-
ables used in the access functions have the same value iateutiteevaluationof the
expression 0 may be 0, but simply doing the difference of the symbols mayghe

0. Addressing this issue requires classical data-flow arslyroblem for arrays [19]
and can be solved with a more complete analysis and undergstrassumptions on
the form of the input code. In our framework, the only consee of not detecting
dynamic cross-iteration reuse is that we may not have apgdiimension-lifted transpo-
sition at places where it could have been useful. Our arsilysionservative in that sense
but it requires only minimal assumptions on the input code.

for (i = 1bi; i < ubi; ++i) for (i = 1bi; i < ubi; ++i) for (i = 1lbi; i < ubi; ++i)
for (j = 1lbj; j < ubj; ++j) for (j = 1bj; j < ubj; ++j) | {
A[I[5] = BL i 1[j+1] + { A[i1[1bj] += B[il[1bj-1];
B[il[j1+ |R: A[LI[§] += BLil1[j-11; for (j = 1bj + 1; j < ubj; ++j)
B[i-11[ j 1; S:  C[il[j] += BLil1[ j 1; {
} A[i][ j 1 += BLi1[j-1];

Clil[j-11 += B[il[j-1];

¥
Cl[i][ubj] += B[i] [ubj];

@) (b) (©

Fig. 8. Code examples

Stream offset The presence of a cross-iteration reuse does not necgssapily the
presence of a stream alignment conflict. In particular, alles where cross-iteration
reuse can be removed by iteration shifting (that is, a sirofflet of the stream) do not
correspond to a stream alignment conflict. Thus, in ordeeteat only the set of arrays
to be dimension-lifted and transposed, we need to pruneethef seferences which do
not generate a stream alignment conflict from the set of fdteaces with cross-iteration
reuse. .

Consider the example of Figure 8(b) that has cross-iteratase. It is possible to
modify the innermost loop such that the reuse disappearsteration shifting[19].
Shifting is the iteration space transformation view of npartéting the stream offset, as
it influences which specifimstanceof the statements are being executed under the same
iteration of loopj. Consider shifting the second statement by 1, the trangfdrcode is
shown in Figure 8(c).

Definition 4 (Stream offset via shifting). Consider two statements R and S. Changing
the stream offset is performed by shifting the iteratiorR @fith respect to the iterations
of S by a constant, scalar factog. All streams used by R have the same offget



There are two important properties of shifting for strearfsetf First, as shown
above, shifting can make cross-iteration reuse disappesorme cases. It can also in-
troduce new cross-iteration reuse by assigning differdisets to streams associated
with the same array.

Second, shifting is not always a legal reordering transéiom. It may reorder the
statements inside the loop, and change the semanticsrahgdtes to a strong condition
on the legality of iteration shifting.

Definition 5 (Legality of iteration shifting). Consider a pair of statements R and S
such that they are surrounded by a common vectorizable maost loop. Letor be
(resp.os) the shift factor used to offset the streams of R (resp. B)eté is a dependence
between R and S, then to preserve the semantics it is sufficisetor = Os.

To determine if iteration shifting can remove cross-iteratreuse, we first observe
that it changes the access functions of a stateRégtsubstituting] with j — og, givenj
as the innermost loop iterator. The variaplean be used only in the last dimension of the
access function, since the loop is vectorizable with stade access. We then formulate
a problem similar to that of cross-iteration reuse ana)ysith the important difference
being that we seek values ofthat make the problem infeasible; indeed if the problem
has no solution, then there is no cross-iteration reuse.|¥derastrict it to the pairs of
references such that all but the last dimension of the aduestions are equal, as all
cases of reuse require this property. To ease the solutaegs, we thus reformulate it
into a feasibility problem by looking for a solution whare I that is independent of the
value ofl.

Returning to the example in Figure 8(b), we havespfi(j) = (i,j — 1) andf3(j) =
(i, ]). We first integrate the offset factorsnto the access function. As the two statements
are not dependent, we have one factor per statement thag¢gaddpendently computed.
The access functions to consider are nigj) = (i, j —or— 1) and f2(j) = (i, j — Os).

We consider the problem
Si=ir
T: { 11— ji+as=0
If T has a solution for all values gf that is, a solution independent pthen there is
no cross-iteration reuse. Far, or = 0 andog = 1 is a valid solution and this iteration
shifting removes all cross-iteration reuse.

In order to find a valid solution for the whole inner-loop,striecessary to combine
all reuse equalities in a single problem: theariables are shared for multiple references
and must have a unique value. Hence, for code in Figure &@)utl system to solve
integratesd(j, j/) iL12 is augmented witlog andos, and is shown below.

j=1 . iy
T:{10R11/+050 Conditions foB
]—OrR—j/—0s=0 Conditions fora
T has no solution, showing that there is no possible iterafufting that can remove all
cross-iteration reuse in Figure 8(a). Dimension-liftethgposition is thus required.

Putting it all together We now address the general problem of determining if a given i
nermost loop suffers from a stream alignment conflict thatlmasolved via dimension-
lifted transposition. That is, we look for cross-iterati@use that cannot be eliminated
via iteration shifting.



First, let us step back and precisely define in which casesmbion-lifted transposi-
tion can be used to solve a stream alignment conflict. Dinoenrliited transposition in
essence spreads out the memory locations of referencdsadvia a stream alignment
conflict. In order to ensure there is no conflict remainings amust precisely know, at
compile-time, the distance in memory required to separhatelements. This distance
must be a constant along the execution of the innermost lhup.translates to an addi-
tional constraint on the cross-iteration reuse that isaesible for the stream alignment
conflict: the reuse distance must be a constant. We definectipee ©f applicability of
dimension-lifted transposition as follows.

Definition 6 (Applicability of dimension-lifted transposition). Consider a collection
of statements surrounded by a common vectorizable inngr. liddhere exists cross-
iteration reuse of a constant distance that cannot be elteid by iteration shifting,
then the stream alignment conflict can be solved with dinoserAldited transposition.

If an array accessed in a candidate vector inner loop is diroedifted-and-transposed,
all arrays in the inner loop are also dimension-lifted-arahsposed. The data layout
transformation implies significant changes in the loop m@rdnd in the order the data
elements are being accessed. All arrays must be dimeriffiesh4inless some computa-
tions simply could not be vectorized anymore. We presenigare 9 a complete algo-
rithm to detect which arrays are to be transformed by dinmenbifted transposition in a
program.

Input P: input program
Output Arrays: the set of arrays to be dimension-lifted

L—0
forall innermost loops | in P do
forall arrays A referenced in | do
/* Check loop-carried dependence */
forall write references fi to A do
forall references f2 to A do
S — {3 @), B(I’”)fiﬂf/.z\ =0}
if $ # 0 then goto next loop |
/* Check stride-one */
forall references fo to A do
S = { V1,30 + D = (0,..,0,1) }
if § = 0 then goto next loop |
/* Check scalar reuse distance */
forall pairs of references fi, fZ to A do
S — {3 (L 6(|.|/)f&.f/§ =0}

if $ # 0 then
S —{a ez 6(|,|)f&>f£ = (0,..,0,a) }
if § = 0 then goto next loop |
L — L Ul

forall | € £ do
/* Check conflict after iteration shifting */
T « createlterationShiftingProblem(l)
if 7 = 0 then
Arraygl) < all arrays in |

Fig. 9. Algorithm to detect arrays to be dimension-lifted-and-transposed

ProcedurereatelterationShiftingProblem creates a system of equalities that
integrates the shift factors as shown in Section 4.3. If this system has no solution,
then at least one cross-iteration reuse remains eventaftation shifting. Since we have



prevented the cases where the reuse is not a scalar coriteamthe conflict can be
solved with dimension lifting. We thus place all arrays af thop into the list of arrays
to be dimension-lifted-and-transposed.

While solvingT', we compute values far to remove cross-iteration reuse. When it
is not possible to remove all conflicts with iteration shiftj we compute values far
that minimizes the distance between two iterations reusiagame element. The largest
among all reuse distances in the iteration-shifted progsakept and used during code
generation to determine the boundary conditions.

5 Experimental Evaluation

The effectiveness of the dimension-lifting transformatieas experimentally evaluated
on several hardware platforms using stencil kernels fronaréety of application do-
mains. First, we describe the hardware and compiler infraitre used for experiments.
Next, the stencil kernels used in the experiments are destriFinally, experimental
results are presented and analyzed.

5.1 Hardware

We performed experiments on three hardware platforms: AMiBriem 9850BE, In-
tel Core 2 Quad Q6600, and Intel Core i7-920. Although all»8& architectures, as
explained below, there are significant differences in perénce characteristics for exe-
cution of various vector movement and reordering instongi

Phenom 9850BEThe AMD Phenom 9850BEK10h microarchitecture) is an x86-64
chip clocked at 2.5 GHz. It uses a 128b FP add and 128b FP tgu&ipMD units
to execute a maximum of 8 single precision FP ops per cyclefkp/s). The same
SIMD units are also used for double precision operationgngia peak throughput
of 10 Gflop/s. Unaligned loads are penalized on this architecresulting in half the
throughput of aligned loads and an extra cycle of latencg $BE shuffle instruction
shufps is used by ICC for single precision inter- and intra-regist®vement. Double
precision stream alignment conflicts are resolved by ICGgaing consecutiveovsd
and movhpd SSE instructions to load the low and high elen#rdssector register.

Core 2 Quad Q6600The Intel Core 2 Quad Q660&éntsfieldmicroarchitecture) is an
x86-64 chip running at 2.4 GHz. Like the Phenom, it can isss&ictions to two 128-
bit add and multiply SIMD units per cycle to compute at a maximrate of 19.2 single
precision GFlop/s (9.6 double precision Gflop/s). Heups andmovupd unaligned
load instructions are heavily penalized on this architectAligned load throughput is 1
load/cycle. Unaligned load throughput drops to 5% of peakmithe load splits a cache
line and 50% of peak in all other cases. ICC generatepdhegnr SSSE3 instruction
for single precision inter- and intra-register movementCare 2 Quad. Double preci-
sion shifts are accomplished with consecutiversd-movhpd sequences as previously
described.

Core i7-920The Intel Core i7-920Nehalemmicroarchitecture) is an x86-64 chip run-
ning at 2.66 GHz. SIMD execution units are configured in theesananner as the pre-
viously described x86-64 processors, leading to peak FRigiput of 21.28 single pre-
cision GFlop/s and 10.64 double precision Gflop/s. Unaligloads on this processor



are very efficient. Throughput is equal to that of aligneddkat 1 load/cycle in all
cases except cache line splits, where it drops to 1 load perytles. Single precision
code generated by ICC auto-vectorization uses unaligredslexclusively to resolve
stream alignment conflicts. Double precision code containembination of consecu-
tive movsd-movhd sequences and unaligned loads.

5.2 Stencil Codes

We evaluated the use of the dimension-lifting layout transfition on seven stencil
benchmarks, briefly described below.

Jacobi 1/2/3D The Jacobi stencil is a symmetric stencil that occurs fretiydoth in
image processing applications as well as with explicit tstepping schemes in PDE
solvers. We experimented with one-dimensional, 2D, and &fiants of the Jacobi sten-
cil, and used the same weight for all neighbor points on thecitand the central point.

In the table of performance data below, the 1D Jacobi vaisaneferred as J-1D. For
the 2D Jacobi stencil, both a five point “star” stencil (J-2pt) and 9 point “box”(J-2D-
9pt) stencil were evaluated A seven point “star” stencBQR}9Opt) was used to evaluate
performance of Jacobi 3D code.

Heattut 3D This is a kernel from the Berkeley stencil probe and is basealdiscretiza-
tion of the heat equation PDE.[17].

FDTD 2D This kernel is the core computation in the widely used FiDiféerence Time
Domain method in Computational Electromagnetics [34]

Rician Denoise 2DThis application performs noise removal from MRI images amd
volves an iterative loop that performs a sequence of stepeitations.

Problem SizesWe assume the original program is tiled such that the footmf a tile
does not exceed the L1 cache size, thus all arrays are sifidrtahe L1 data cache.
As is common for stencil codes, for each of the benchmarlesetiis an outer loop
around the stencil loops, so that any one-time layout toansition cost to copy from
an original standard array representation to the trangdrmepresentation involves a
negligible overhead.

Code versiong~or each code, three versions were tested:
— Reference, compiler auto-vectorized
— Layout transformed, compiler auto-vectorized
— Layout transformed, explicitly vectorized with intrinsic

Vector intrinsic code generation Vector intrinsic code generation is based on the pro-
cess shown in Figure 6. An outline of the steps in code generet provided next.

Convert stencil statement(s) into intrinsic equivalentge convert C statements into
vector intrinsic equivalents. For example, consider thiefang 3 point 1D Jacobi state-
ment:

alil = b[i-1] + b[i] + b[i+1];

This statement can be expressed in SSE intrinsics:

adlt[i] = mm_add_ps(mm_add ps(bdlt[i-1],bd1t[i), bdlt[i+1]);

Note thatd1t suffixed arrays have been layout transformed.



Generate boundary cod@he reuse distance information obtained with the framework
of Section 4 above is used to generate boundary code fromtifigsic statements. This
code contains the appropriate shifts and masked storegeddo maintain program
correctness.

Generate intrinsic steady state codaain, reuse distance information is used to gener-
ate a vector intrinsic inner loop. This loop, along with bdary code, replaces the orig-
inal inner loop. Finally, well-known loop unrolling and rister blocking optimizations
are performed. It is interesting to note that unrolling thailla C versions of the codes
did not improve performance (in many cases impacted pegoom negatively), while
unrolled versions of the vector intrinsic code resultedérf@rmance improvement.

5.3 Results

Absolute performance and relative improvement for singld double precision ex-
periments across all platforms and codes are given in FigQréntel C Compiler icc
v11.1 with the ~fast’ option was used for all machines.Vectorization pragmagewe
added to the inner loops of reference and layout transforrnéées to force ICC auto-
vectorization.

Phenom Core2 Quad Core i7
P DP SP DP SP

S | | P
GF/s[ Imp. |GF/s[ Tmp. |GF/s] Imp. |GF/s] Imp. [GF /s Imp. |GF/s[ Tmp.
Ref.[4.27]1.00<| 3.08[1.00x[ 3.71]1.00x| 2.46]1.00x [ 8.67]1.00x [ 3.86]1.00x

J-1D  |DLT |7.68]1.80x|3.79|1.23x| 9.42|2.54x | 2.83|1.15x|10.551.22x | 4.01|1.04x
DLTi|11.382.67x| 5.71]1.85x|13.953.76x | 7.01|2.85x|15.351.77x | 7.57|1.96x

Ref.[6.96[1.00x[ 2.71[1.00x [ 3.33[1.00x [ 2.94]1.00x [ 8.98]1.00x [ 4.54[1.00x

J-2D-5pt |DLT | 9.00(1.29x | 3.75|1.38x | 8.86|2.66x | 4.58|1.56x [10.201.14x | 5.18|1.14x
DLTi|11.311.63x| 5.67]2.09x|11.583.48x | 5.85|1.99x|13.131.46x | 6.58|1.45x
Ref.[4.4871.00x[ 3.21]1.00x [ 4.2171.00x| 2.72]1.00x [ 8.30[1.00x [ 4.11]1.00x
J-2D-9pt |DLT | 7.71]1.72x| 3.81|1.18x | 8.04|1.91x | 4.08|1.50x|10.231.23x | 5.23|1.27x
DLTi|12.262.74x| 6.11]1.90x|12.012.85x | 6.03]2.22x|13.631.64x | 6.80|1.65x

Ref.[ 6.0171.00x[ 2.90[1.00x [ 6.0771.00x| 3.04]1.00x [ 9.04]1.00x | 4.64]1.00x
J-3D  |DLT |6.84|1.14x|3.73|1.29x| 8.07|1.33x | 4.25|1.40x | 9.46|1.05x | 5.02|1.08x
DLTi|10.081.68% | 5.36]1.85x|10.361.71x| 5.31|1.75x|12.031.33x | 6.04]1.30x

Ref.[6.06]1.00x[ 3.02[1.00x [ 6.64[1.00x [ 3.29[1.00x[ 8.75]1.00x [ 4.5571.00x
Heatttut-3DDLT | 7.12|1.18x | 3.36{1.11x| 8.71|1.31x | 4.45|1.35x | 9.99]1.14x | 4.91|1.08x
DLTi| 9.59]1.58x|5.12|1.70x | 8.86|1.33x| 4.45|1.35x|11.991.37x| 6.05]1.33%

Ref.[5.86]1.00x[ 3.26]1.00x [ 6.42]1.00x [ 3.35[1.00x[ 8.72]1.00x [ 4.3471.00x
FDTD-2D |DLT | 6.89(1.18x| 3.65(1.12x| 7.71|1.20x | 4.03|1.20x | 8.91|1.02x | 4.73|1.09x
DLTi| 6.64]1.13x| 3.41]|1.05x| 8.03]|1.25x| 4.03|1.20x| 9.74]1.12x| 4.82|1.11x

Ref.[ 3.2971.00x[ 1.93]1.00< [ 1.8771.00x[ 1.27]1.00x [ 3.98[1.00x [ 2.16]1.00x

Rician-2D | DLT | 3.46|1.05x | 2.40|1.25x| 2.59(1.39x | 1.27|1.00x | 4.13|1.04x | 2.23|1.03x
DLTi| 8.09]2.46x| 2.56|1.33x| 8.50|4.55x| 1.27]1.00x |11.312.84x | 2.23]1.03x

Fig. 10. Summary of experimental results. Ref is the unoptimized, auto-veotovizesion. DLT
is the layout transformed, auto-vectorized version. DLTi is the layauisfiormed version imple-
mented with vector intrinsics.

Double Precision Double precision results are shown in columns labeled DPigf F
ure 10. Significant performance gains are achieved acrggetibrms and on all bench-
marks.

ICC auto-vectorized DLT code equaled or improved upon ezfee code perfor-
mance in all cases. The harmonic means of relative impromtnaeross all double pre-
cision benchmarks on x86-64 were 11(QCore i7), 1.2% (Phenom), and 1.28 (Core



2 Quad). Individual benchmark improvements range fromsivcaise, 1.09 (2D Rician
Denoise on Core 2 Quad) to a best case of .8 point 2D Jacobi on Core 2 Quad).

The auto-vectorized layout transformed code was fast Istdiceareas of it were still
very inefficient. While ICC automatically unrolled the inrlepp of reference code, no
such unrolling was done for the layout transformed codethenr ICC generated long
sequences of scalar code for boundary computations.

These deficiencies were addressed in the intrinsic versidhs codes. Scalar bound-
ary code was replaced with much more efficient vector code adnnner loops were
unrolled. Further gains can be also be attributed to ragteking and computation
reordering.

Intrinsic codes equaled or improved upon auto-vectorizgdigns in all cases, with
a worst case improvement equal to reference (2D Rician Bermi Core 2 Quad) and
best case of 2.86 (Jacobi 1D on Core 2 Quad). Harmonic means of improvememts ov
reference were 1.35(Core i7), 1.6 (Phenom), and 1.5¢ (Core 2 Quad).

Single Precision While most scientific and engineering codes use double poacier
their computations, several image processing stencilsingée precision. With the cur-
rent SSE vector ISA, since only two double precision elesean fit in a vector, ac-
celeration of performance through vectorization is mugls aan with single precision.
However, the increasing vector size of emerging vector IS#ch as AVX and LRBni,
imply that the performance improvement currently possvaili single precision SSE
will be similar to what we can expect for double precision Av&c. For these reasons
we include single precision performance data for all beraths

Significant single precision performance gains are acHieesoss all platforms and
on all stencils. They are reported in Figure 10 underSReolumns.

Layout transformed code auto-vectorized by ICC ran sigmifily faster than refer-
ence code on all platforms. The harmonic means of relativipaance improvements
across all benchmarks on x86-64 were X1(Core i7), 1.2% (Phenom), and 1.64
(Core 2 Quad). Individual benchmark improvements range frworst case, 1.02 (2D
FDTD on Core i7) to a best case of 2,645 point 2D Jacobi on Core 2 Quad).

Vector intrinsic code optimizations again further increhdhe performance gains
seen for auto-vectorized layout transformed code. Alinisic codes were substantially
faster than their corresponding auto-vectorized versidinimum relative improvement
over reference on x86-64 was 1:442D FDTD on Core i7) while maximum relative
improvement was 4.556 (2D Rician Denoise on Core 2 Quad). Harmonic means of
improvements over reference were 25@ore i7), 1.8k (Phenom), and 2.16 (Core
2 Quad).

Discussion Performance gains for all x86-64 codes can be attributeldg@ltimination
of costly intra-register movement, shuffle, and unaligneatlinstructions from inner
loop code.

The performance gains on Core i7, while significant, weresistantly the small-
est of any platform tested. This is partly explained by tHatieely small performance
penalty associated with unaligned loads and shuffle on tRid.GStill, the DLT intrin-
sic versions achieve a 1.53average performance improvement for single precision and
1.35x for double precision codes on this platform. In contrase, KentsfieldCore 2
Quad, demonstrates consistently large performance ireprents from layout transfor-
mation. This can mainly be attributed to poorly performirgtor shuffle hardware.

Generally speaking, 1D Jacobi showed both the largest meafoce gains, and the
fastest absolute performance, while higher dimensioealds showed smaller, but still



significant improvement. Higher dimensional stencils henvare operands and more
intra-stencil dependences. This leads to higher registengancy, higher load / store
unit utilization, and more pipeline hazards / stalls forstaeodes. This combination of
factors leads less improvement with respect to the 1D casmef@l and application-

specific optimizations based on the data layout transfaomatescribed in this work

could likely achieve higher performance through carefatrmction scheduling and tun-
ing of register block sizes to address these issues.

6 Related Work

A number of works have addressed optimizations of stenailpigations on emerging
multicore platforms [7], [16], [17], [6], [27], [26], [11][37], [10], [4], [9], [40], [38],
[41], [8], [39]. In addition, other transformations suchtdisg of stencil computations
for multicore architectures have been addressed in [48], [21], [34]. Recently, mem-
ory customization for stencils has been proposed in [36].

Automatic vectorization has been the subject of extensivdysn the literature [19,
42]. There has been significant recent work in generatireggéfe code for SIMD vector
instruction sets in the presence of hardware alignmenttzide €onstraints as described
in [12, 44, 45, 31, 13]. The difficulties of optimizing for adé range of SIMD vector ar-
chitectures are discussed in [29, 14]. In addition, seatadr works have addressed the
exploitation of SIMD instruction sets [22, 24, 23, 30, 32,28]. All of these works only
address SIMD hardware alignment issues. The issues ofithignic stream alignment
addressed in this paper are distinctly different from thebpgm addressed in those works
and the dimension-lifted transposition solution that weehdeveloped has a significant
impact on performance even on SIMD architectures wheredaamisalignment does
not significantly degrade performance.

Stream alignment shares a lot similarties with array aligntin data-parallel lan-
guages [2, 5, 20] and several related works. None of theskswbhowever, considered
dimension-lifted transposition of accessed arrays. Thasgbeen prior work attempting
to use static linear data layout optimizations (such as p&tions of array dimensions)
to improve spatial locality in programs [33, 18]. These veodo not address dimension-
lifted transposition. Rivera and Tseng [35] presented gatiding techniques to avoid
conflict misses. Recently, linear data layout transforomatito improve vector perfor-
mance have been proposed [15].

To avoid conflict misses and false sharing, Amarasingheik & maps data ac-
cessed by a processor to contiguous memory locations bg s8ip-mining and permu-
tation of data arrays. In contrast, our approach attemptapedata in order to spread out
reuse carrying data in the innermost loops in order to hametimap to the same vector
register slot; this avoids alignment conflicts and elimasathe need for extra loads or
inter- and intra-register data movement.

7 Conclusions

This paper identifies, formalizes and provides an effecition for a fundamental

problem with optimized implementation of stencil compiaas on short-vector SIMD

architectures. The issue of stream alignment conflicts wamsdlized and a static analy-
sis framework was developed to identify it. A novel nonlindata layout transformation
was proposed to overcome stream alignment conflicts. Exeatial results on multiple
targets demonstrate the effectiveness of the approach omber of stencil kernels.
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