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Abstract. This paper presents compiler technology that targets gen-
eral purpose microprocessors augmented with SIMD execution units for
exploiting data level parallelism. Numerical applications are accelerated
by automatically vectorizing blocks of straight line code for processors
featuring two-way short vector SIMD extensions like Intel’s SSE 2 on
Pentium 4, SSE 3 on Pentium 5, AMD’s 3DNow! , and IBM’s SIMD
operations implemented on the new processors of the BlueGene/L su-
percomputer.

The paper introduces a special compiler backend which is able (i) to
exploit particular properties of FFT code, (ii) to generate optimized
address computation, and (iii) to perform specialized register allocation
and instruction scheduling.

Experiments show that the presented automatic SIMD vectorization can
achieve performance that is comparable to the hand optimized code for
key benchmarks. The newly developed methods have been integrated
into the codelet generator of Fftw and successfully vectorized compli-
cated code like real-to-halfcomplex non-power of two FFT kernels. The
floating-point performance of Fftw’s scalar version has been more than
doubled, resulting in the fastest FFT implementation to date.

1 Introduction

Major vendors of general purpose microprocessors have included short vector
single instruction multiple data (SIMD) extensions into their instruction set
architecture to improve the performance of multimedia applications by exploiting
data level parallelism. The newly introduced instructions have the potential for
outstanding speed-up, but they are difficult to utilize using standard algorithms
and general purpose compilers.

Recently, a new software paradigm emerged in which optimized code for
numerical computation is generated automatically [4, 9]. For example, Fftw
has become the de facto standard for high performance FFT computation. The
current version of Fftw includes the techniques presented in this paper to utilize
SIMD extensions.
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This paper presents compiler technology for automatically vectorizing numer-
ical computation blocks as generated by automatic performance tuning systems
like Fftw, Spiral, and Atlas. The blocks to be vectorized may contain load
and store operations, index computation, as well as arithmetic operations.

In particular, the paper introduces a special compiler backend which gener-
ates assembly code optimized for short vector SIMD hardware. This backend is
able to exploit special features of straight line FFT code, generates optimized
address computation, and applies additional performance boosting optimization.

The newly developed methods have been integrated into Fftw’s codelet gen-
erator yielding Fftw-Gel [6], a short vector SIMD version of Fftw featuring
an outstanding floating-point performance (see Section 5).

Related Work. Established vectorization techniques mainly focus on loop-
constructs. For instance, Intel’s C++ compiler and Codeplay’s VectorC com-
piler are able to vectorize loop code for both integer and floating-point short
vector extensions.

A Spiral based approach to portably vectorize discrete linear transforms
utilizing structural knowledge is presented in [2].

A vectorizing compiler exploiting superword level parallelism (i. e., SIMD
style parallelism) has been introduced in [8].

Intel’s math kernel library (MKL) and performance primitives (IPP) both
support SSE and SSE 2 available on Pentium III and 4 processors and the
Itanium processor family, as well as the new SSE 3 on Pentium 5.

Synopsis. Section 2 describes Fftw-Gel, the new short vector SIMD version of
Fftw. Section 3 describes the machine independent vectorization of basic blocks
and related optimization techniques. Section 4 introduces the newly developed
backend optimization techniques. The methods of Sections 3 and 4 are the core
techniques used within the codelet generation of Fftw-Gel. Section 5 presents
numerical results.

2 FFTW for Short Vector Extensions: FFTW-GEL

Fftw-Gel 1 is an extended version of Fftw that supports two-way short vector
SIMD extensions (see Fig. 1).

FFTW is an automatic FFT code generator based on a recursive implemen-
tation of the Cooley-Tukey FFT algorithm. Fftw uses dynamic programming
with measured run times as cost function to find a fast implementation for a
given problem size on a given machine.

Fftw consists of the following parts: Planner and executor provide for the
adaptation of the FFT computation to the target machine at runtime while
the actual computation is done within routines called codelets. Codelets are
generated by the codelet generator genfft, a special purpose compiler.

1 available from http://www.fftw.org/~skral
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Within the codelets a variety of FFT algorithms is used, including the Cooley-
Tukey algorithm, the split radix algorithm, the prime factor algorithm, and the
Rader algorithm.

The compiler techniques presented in this paper were used to extend Fftw’s
codelet generator to produce vectorized codelets. These vectorized codelets are
compatible with Fftw’s framework and thus can be used instead of the original
codelets on machines featuring two-way short vector SIMD extensions. That way
Fftw’s core routines are sped up while all features of standard Fftw remain
supported.

Short Vector SIMD Extensions. Examples of two-way short vector SIMD
extensions supporting both integer and floating-point operations include Intel’s
streaming SIMD extensions SSE 2 and SSE 3, AMD’s 3DNow! family, as well as
IBM’s PowerPC 440d processors in BlueGene/L supercomputers.

Double-precision short vector SIMD extensions paved the way to high per-
formance scientific computing. However, special code is needed as conventional
scalar code running on machines featuring these extensions utilizes only a small
fraction of the potential performance.

Short vector SIMD extensions are advanced architectural features which are
not easily utilized for producing high performance codes. Currently, two ap-
proaches are commonly used to utilize SIMD instructions.

Vectorizing Compilers. The application of compiler vectorization is restricted to
loop-level parallelism and requires special loop structures and data alignment.
Whenever the compiler cannot prove that a loop can be vectorized optimally
using short vector SIMD instructions, it has to resort to either emitting scalar
code or to introducing additional code to handle special cases.

Hand-Coding. Compiler vendors provide extensions to the C language (data
types and intrinsic or built-in interfaces) to enable the direct use of short vector
SIMD extensions from within C programs. Of course, assembly level hand-coding
is unavoidable if there is no compiler support.

2.1 FFTW-GEL

Both of the latter approaches are not directly utilizable to generate vector-
ized Fftw codelets that may act as a replacement for the respective standard
codelets. Due to its internal structure, Fftw cannot be vectorized using compil-
ers focusing on loop vectorization. Fftw automatically generates code featuring
large basic blocks (up to thousands of lines) of numerical straight line code.
Accordingly, such basic blocks consisting of straight line code have to be vector-
ized rather than loops. Fftw-Gel comprises an extended, architecture-specific
version of Fftw’s genfft, supporting two-way short vector SIMD extensions.
Moreover, it includes a special compiler backend which generates assembly code
optimized for short vector SIMD hardware. This backend is able to exploit spe-
cial features of straight line FFT code, generates optimized address computation,
and applies additional performance boosting optimization.
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FFTW-GEL’s Targets are summarized in the following items.

Minimizing Code Size. The greatest part of Fftw-Gel’s optimizations is de-
voted to reducing a codelet’s overall size. This kind of minimization is of the
utmost importance because a processor’s instruction cache is generally small.
For instance, the Pentium 4’s trace cache holds 12K of micro-operations. This
is not overwhelmingly much, considering that each x86 instruction demands at
least one micro-operation. Instructions using direct memory operands demand
even more. Hence, a code size reduction helps to overcome the bottleneck of
small instruction caches and improves the execution performance.

Fig. 1. Fftw-Gel’s
framework: Automatically
generated FFT DAGs are
vectorized and subjected
to advanced optimization.

Speeding Up Integer Operations. Arithmetic inte-
ger operations in Fftw codelets are solely devoted
to effective address calculations needed to access
data arrays residing in memory. As general purpose
compilers are normally not targeted at optimizing
such integer calculations, Fftw-Gel introduces a
special technique for automatically generating opti-
mized code for effective address computations. The
application of this optimization technique improves
the performance of Fftw codelets significantly.

Fftw-Gel’s vectorizer aims at the optimization
of code size while the backend additionally aims
at the optimization of integer arithmetics of scalar
straight line Fftw codelets.

FFTW-GEL’s Architecture. Fig. 1 schemat-
ically describes the various levels of optimization
performed by Fftw-Gel.

Vectorization of Straight Line Code. Within the
context of Fftw, codelets do the bulk of the com-
putation. As codelets feature a function body con-
sisting sometimes of thousands of lines of automat-
ically generated straight line code without loops,
the efficient vectorization of straight line code is an
indispensable requirement in this context. The chal-
lenge addressed by vectorizing straight line code is
to extract parallelism out of a sequence of opera-
tions while maintaining data locality and utilizing
special features of 2-way short vector SIMD exten-
sions.

Optimization of Vectorized Code. Optimizer I comprises a local rewriting system
using a set of rules to optimize the SIMD DAG obtained from the vectorizer.
A first group of rules is used to reduce the number of instructions as far as
possible, exploit redundancies, reduce the number of source operands, and finally
eliminate dead code. A second group of rules is used to rewrite instructions
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unsupported on a given target processor into supported ones. This process is
hinted by processor specific instruction set models.
Straight Line Code Assembly Backend. The backend uses (i) efficient meth-
ods to compute effective addresses, (ii) a register allocator, (iii) an instruction
scheduler, (iv) an optimizer for in-memory operands, (v) a register reallocator,
and (vi) address generation interlock (AGI) prevention for code size reduction.

The algorithm for the efficient calculation of effective addresses reuses already
computed addresses as operands for other address computation code. This tech-
nique yields the shortest possible instruction sequences in address computation
code.

The basic block register allocator that utilizes Belady’s MIN algorithm as
its spill heuristic, reduces the number of register spills and reloads. Hence, be-
sides a performance improvement, the number of spill and reload instructions is
considerably reduced in the final assembly code.

The instruction scheduler deals with the instruction latencies and through-
puts of a specific target architecture by utilizing a model of the target processor’s
execution behavior.

Direct use of in-memory operands helps to discover weaknesses of the register
allocator. Explicit Loads of some data from memory into a register are trans-
formed into implicit loads if the data is used only once. Such register operands
are discarded and substituted by equivalent memory operands. The register real-
locator does not care about dropped out load instructions for discarded register
operands in its subsequent allocation process.

The register reallocator, the direct use of in-memory operands, and other
optimization techniques and methods, are executed in a feedback driven opti-
mization loop to further improve the optimization effect.

Finally, AGIs of load and store operations are detected and the conflicting
instructions are reordered.

3 Vectorization of Scalar Straight Line Code

⇒

add(A,B,C) ⇒ vadd(AD,BE,CF)
add(D,E,F)

Table 1. 2-way Vectorization.
Two scalar add instructions are
transformed into a vector vadd in-
struction. The result of the vector
addition of the fusions AD and BE is
stored in CF.

The goal of the vectorizer is to transform
a scalar computation into short vector code
while achieving the best possible utilization
of SIMD resources. It automatically extracts
2-way SIMD parallelism out of scalar Fftw
code blocks (i) by fusing pairs of scalar tem-
porary variables into SIMD cells, and (ii) by
replacing the corresponding scalar instruc-
tions by vector instructions as illustrated by
Tab. 1.

Fusions, i. e., tuples of scalar variables,
are declared such that every scalar variable
appears in exactly one of them. Each fusion
is assigned one SIMD variable.



6

On the set of vector variables, a sequence of SIMD instructions has to perform
exactly the same computation as the given scalar code. This goal is achieved by
pairing scalar instructions and replacing each pair by a sequence of semantically
identical SIMD instructions operating on the corresponding SIMD cells. Thus,
the vectorizer exhibits the following benefits:

Halving the Instruction Count. Optimally, every pair of scalar floating-point
instructions is joined into one equivalent SIMD floating-point instruction, thus
cutting the instruction count into half.

Diminishing Data Spills and Reloads. The wider SIMD register files allow
for a more efficient computation. The register allocator indirectly benefits from
the register file being twice as wide as in the scalar case.

Accelerating Effective Address Calculations. The pairing of memory ac-
cess instructions potentially reduces the effort needed for calculating effective
addresses by fifty percent.

To keep the amount of hardware specific details in the vectorization process as
small as possible, virtual machine models are utilized. These models are sets of
virtual instructions emulating the semantics of operations without incorporating
any architecture specific syntactic idioms. The usage of such models enables
portability and extensibility.

The virtual machine models used in the vectorizer are abstractions of scalar as
well as 2-way SIMD architectures, i. e., the vectorizer transforms virtual scalar to
virtual 2-way SIMD instructions. During the optimization process the resulting
instructions are rewritten into instructions that are actually available in a specific
architecture’s instruction set.

3.1 The Vectorization Engine

The vectorization engine expects a scalar DAG represented by straight line code
consisting of virtual scalar instructions in static single assignment (SSA) form as
input. The goal of vectorization is to replace as many virtual scalar instructions
as possible by virtual vector instructions. To achieve this goal, the vectorization
engine has to find pairs of scalar floating-point instructions (and fusions of their
respective operands), each yielding — in the optimal case — one SIMD floating-
point instruction. In some cases, additional SIMD instructions may be required
to obtain a SIMD construct that is semantically equivalent to the original pair
of scalar instructions. The vectorization algorithm described hereby is the basis
of Fftw-Gel’s vectorization engine. First, some definitions:

Pairing Rules specify in detail ways in which pairs of scalar floating-point instruc-
tions can be transformed into a single or a sequence of semantically equivalent
SIMD instructions. A pairing rule often provides several alternatives to do so.
The rules used in Fftw-Gel’s code generator can be classified according to the
types of the two scalar instructions on which vectorization is to be performed,
i. e., unary (i. e., multiplication by a constant), binary (i. e., addition and subtrac-
tion) and memory access type (i. e., load and store instructions). Pairings of the
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following instruction combinations are supported: (i) load/load, (ii) store/store,
(iii) unary/unary, (iv) binary/binary, (v) unary/binary, (vi) unary/load, and
(vii) load/binary.

Pairing Rule Sets comprise various pairing rules.

Instruction Pairing. Two scalar instructions can be vectorized, i. e., paired, if
and only if neither of them is already involved in an existing pairing and the
instruction types are matching a pairing rule from the utilized pairing rule set.

Operand Fusion. Two scalar operands A and B are fused, i. e., assigned to-
gether, to a SIMD cell AB = (A,B) or BA = (B,A) if and only if they are either
source/source or destination/destination operands of instructions considered for
pairing and neither of them is already involved in another fusion. The position
of the scalar variables A and B inside a SIMD cell (either as its lower or its higher
part) strictly defines the fusion, i. e., AB �= BA.

Compatible Fusion. A required fusion X12 = (X1,X2) is compatible to an al-
ready existing fusion Y12 = (Y1,Y2) if and only if X12 = Y12 or X1 = Y2 and
X2 = Y1. In the second case, a special transformation is needed to allow the
usage of fusion Y12 whenever X12 is needed.

Fftw-Gel’s vectorization algorithm implements a depth first search with
chronological backtracking. The search space is given by application of the rules
in the currently utilized pairing rule set in arbitrary order. Depending on how
restrictive the utilized rule set is in allowing instructions to be paired, there can
be many, one or no possible solution at all.

3.2 The Vectorization Process

(1) Initially, no scalar variables are fused and no scalar instructions are paired.
The vectorization process is started by pairing two arbitrary store instructions
and fusing the corresponding source variables. Should the algorithm backtrack
without success, it tries possible pairings of store instructions, one after the
other.

(2) Pick a fusion on the currently considered vectorization path, whose two
writing instructions have not yet been paired. Because of the scalar code being
in SSA form, there has to be exactly one instruction for each of the scalar
variables present in the fusion that uses it as destination operand. According
to the type of these instructions, an applicable pairing rule is chosen. If all
existing fusions have already been processed, i. e., the dependency path has been
successfully vectorized from the store to all affected loads, start the vectorization
of another dependency path by choosing two remaining stores. If all stores have
been paired and no fusions are left to be processed, a solution has been found
and the algorithm terminates.

(3) According to the chosen pairing rule, fuse the input variables of the scalar
instructions if possible (i. e., none of them is already part of another fusion) or,
if a compatible fusion exists use it instead.
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(4) Pair the chosen scalar instructions, i. e., substitute them by one or more
according SIMD instructions.

(5) If a fusion or pairing alternative does not lead to a valid vectorization,
choose another one. If none of the applicable rules leads to a solution, fail and
backtrack to the most recent vectorization step.

Steps (2) to (5) are iterated until either all scalar instructions are vectorized, or
the search process terminates without having found a result.

If a given rule set is capable of delivering more than one valid solution, the order
in which the pairing rules are tested is relevant for the result. This can be used to
favor specific kinds of instruction sequences by ranking the corresponding rules
before the others. For instance, the vectorization engine can be forced first to
look for instructions directly supported by a given architecture, thus minimizing
the number of extracted virtual instructions that have to be rewritten in the
optimization step.

3.3 Vectorization Levels

Vectorization is a search process that requires to prune the search space as far as
possible in order to minimize search time. On the other hand, the use of versatile
rules, providing several vectorization alternatives, is indispensable to achieve a
good vectorization result or to enable vectorization at all.

Taking both aspects into consideration, the concept of vectorization levels
is introduced. Each level, embodied by an according rule set, allows a specific
subset of the pairing rules to be applied.

Full Vectorization only provides rules for pairing instructions of the same
type, because mixed pairings do not allow for a “clean vectorization”. As it is
the most restrictive vectorization level, it may happen that no full vectorization
can be found at all.

Semi Vectorization allows all kinds of rules to be applied. Therefore, a valid
vectorization is easily found. The drawback is that semi vectorization only results
in “semi optimal” SIMD utilization.

Null Vectorization is used if a given scalar DAG cannot be vectorized at all. In
this case, every scalar instruction is simply transformed into one corresponding
SIMD instruction, leaving half its capacity unused.

The vectorization search space can be pruned by applying additional heuristic
schemes that reduce the number of possible pairing partners in load/load and
store/store vectorization. This pruning is done in a way to enforce the exploita-
tion of obvious parallelism inherent in the code.

Full vectorization tries several heuristic schemes to vectorize memory access
operations, whereas semi vectorization just relies on one of these schemes. Exper-
iments have shown that the application of heuristic schemes significantly reduces
the vectorization runtime.
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3.4 Vectorization Specific Optimization

After the vectorizer terminates successfully by delivering a vectorization of the
scalar DAG, Optimizer I performs several simple improvements to the resulting
code (see Fig. 1). For that purpose, a rewriting system is used to simplify com-
binations of virtual SIMD instructions, also with regard to target architecture
specifications.

The first group of rewriting rules that is applied aims at (i) minimizing the
number of instructions, (ii) eliminating redundancies and dead code, (iii) re-
ducing the number of source operands (copy propagation), and (iv) performing
constant folding. The critical path length of the DAG is shortened by exploiting
specific properties of the target instruction set. Finally, the number of source
operands necessary to perform an operation is reduced, thus minimizing register
pressure.

The second group of rules is used to rewrite virtual instructions into combina-
tions of (still virtual) instructions actually supported by the target architecture.

In a third and last step the Optimizer I schedules and topologically sorts
the instructions of the vectorized DAG. The scheduling algorithm minimizes
the lifespan of variables by improving the locality of variable accesses. It is an
extension of Fftw 2.1.3’s scheduler.

The code output by Optimizer I consists of instructions out of a subset of
the virtual SIMD instruction set that corresponds to the target architecture.

4 Backend Optimization for Straight Line Code

The backend translates a scheduled sequence of virtual SIMD instructions into
assembly language. It performs optimization in both an instruction set specific
and a processor specific way. In particular, register allocation and the computa-
tion of effective addresses is optimized with respect to the target instruction set.
Instruction scheduling and avoidance of address generation interlocks is done
specifically for the target processor.

4.1 Low Level Optimization—Instruction Set Specific

Instruction set specific optimization takes into account properties of the target
microprocessor’s instruction set.

Depending on whether a RISC or a CISC processor is used, additional con-
straints concerning source and target registers have to be satisfied. For instance,
many CISC style instruction sets (like Intel’s x86) require that one source register
must be used as a destination register.

The utilization of memory operands, as provided by many CISC instruction
sets, results in locally reduced register pressure. It decreases the number of in-
structions as two separate instructions (one load- and one use-instruction) can
be merged into one (load-and-use). The code generator of Fftw-Gel uses this
kind of instructions whenever some register content is accessed only once.
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Many machines include complex instructions that are combinations of several
simple instructions like a “shift by some constant and add” instruction. The
quality of the code that calculates effective addresses can often be improved by
utilizing this kind of instructions.

Register Allocation for Straight Line Code

The codes to be dealt with in Fftw-Gel are potentially very large sequences
of numerical straight line code produced by Fftw in SSA form. Thus, in such
codes only one textual definition of a variable exists, there are no loops in the
code, and every appearance of a temporary variable is known in advance. As a
consequence of these properties, it is possible (i) to evaluate the effective live
span of each temporary variable, and (ii) to perform register allocation according
to Belady’s MIN algorithm.

Belady’s MIN Algorithm. Originally, Belady’s MIN algorithm [1] was in-
tended to provide a replacement strategy for paging in virtual memory: On
replacement the page whose next utilization lies farthest in the future is chosen.
However, in practice it is not always possible to predict the time when a page
will be referenced again. The same difficulty, not to know when a register is to be
used again, would exist if the MIN algorithm was used as a register replacement
strategy for code containing loops. Consequently, general purpose compilers do
not apply the MIN algorithm in their spilling schemes.

Numerical straight line code has more advantageous properties than general
code. Therefore, it is possible in this case to rely on Belady’s MIN algorithm.
Whenever a register is to be spilled, the MIN algorithm chooses a register R
that holds a value V such that the reference to V lies farther in the future than
the references to the values held by all other registers.

Experiments carried out with numerical straight line code have shown that
this simple spilling strategy is superior to the strategies utilized in general pur-
pose C compilers [5].

Register Allocation in FFTW-GEL. The allocator’s input is an instruction
DAG in SSA form. This DAG is target processor specific, as it contains vector
computation as well as integer address computation for the vector instructions’
memory accesses to input and output arrays.

Taking these properties into consideration, registers have to be allocated for
vector as well as integer registers in one overall allocation process. Two different
target register files for vector and integer registers are assumed to exist.

The spilling scheme tries to find a spill victim in the following order: (i) take
a fresh physical register if available, (ii) choose among the dead physical registers
the one which has been dead for the longest time, and finally if no register of any
other kind is available, (iii) choose a register from the spill candidates obtained
by Belady’s strategy.
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Optimized Index Computation

Fftw codelets operate on arrays of input and output data not necessarily stored
contiguously in memory. Thus, access to element in[i] may result in a memory
access at address in + i*sizeof(in)*stride. Both in and stride are param-
eters passed from the calling function.

All integer instructions, except the few ones used for parameter passing, are
used for calculating effective addresses. For a codelet of size N , the elements
in[i] with i = 0, 1, . . . , N − 1 are accessed exactly once. Still, the quality of
code dealing with address computation is crucial for achieving a satisfactory
performance.

Instead of using general integer multiplication instructions (imull, etc.), it
has been demonstrated to be advantageous to utilize (i) equivalent sequences of
simpler instructions (add, sub, shift) which can be decoded faster, have shorter
latencies, and are all fully pipelined, and (ii) instructions with implicit integer
computation, like the lea instruction. Moreover, (iii) reusing the content of
integer registers using the integer register file is beneficial to avoid costly integer
multiplications as far as possible.

The Load Effective Address Instruction. The generation of code sequences
for calculating effective addresses is intertwined with the register allocation pro-
cess. The basic idea to achieve an efficient computation of effective array ad-
dresses is to use the powerful lea instruction of x86 compatible hardware archi-
tectures. The lea instruction combines up to two adds and one shift operation in
one instruction: base + index*scale + displacement. This operation can be
used to quickly calculate addresses of array elements. Thus, the lea instruction
is a cheap alternative to general multiplication instructions.

The goal is to use the available integer register content as base or index
operands in combination with one of the mandatory scale factors 1, 2, 4, or
8 to compute the desired effective address. On effective address generation, the
shortest possible sequence of lea instructions is determined by depth-first itera-
tive deepening. Therefore, effective addresses that have already been calculated
and that are still stored in some integer register are reused as operands for other
lea instructions whenever possible. New operands are put into vacant integer
registers. Corresponding producer lea instructions are generated if and only if it
is not possible to yield the effective address using available operands otherwise.

4.2 Ultra Low Level Optimization—Processor Specific

Typically, processor families supporting one and the same instruction set may
still have different instruction latencies and throughput. Optimization therefore
has to take into account the execution properties of a specific processor. These
are provided by one execution model per processor.

The Optimizer II of Fftw-Gel uses two processor specific optimizations:
(i) Instruction scheduling, and (ii) avoidance of address generation interlocks.

Target processor specific instruction scheduling is performed by taking into
account the processor’s execution behavior (latencies, etc.) and resources (issue



12

Integer Register File LEA Instructions Result

Reg Entry

eax stride*3

ebx stride*5

edx stride*1

esp stride*4

esi stride*9

edi stride*-1

lea ecx, [ebx + 4*eax]

lea ecx, [edi + 2*esi]

lea ecx, [edx + 4*esp]

(5 + 4*3)*stride

(-1 + 2*9)*stride

(1 + 4*4)*stride

Table 2. Efficient Computation of ecx := 17*stride. Registers having an Entry in
the Integer Register File are used as operands for the LEA Instructions. A combination
of them with lea’s scale factor is to be chosen such that the factorization’s result is
equivalent to the direct computation of 17*stride. This example illustrates an optimal
case where all necessary operand factors to compute ecx already reside in some integer
registers. The factors 1*stride and -1*stride have an entry in the integer register file
by default and are therefore assumed to be initially available.

slots, execution units, ports). These properties are provided as externally spec-
ified processor execution models, currently available for Intel’s Pentium 4 and
AMD’s K7.

The Optimizer II can be regarded as one module executed on the vector
instruction DAG in an optimization feedback loop. As long as the estimated
execution time of the code can be improved, Optimizer II is applied. The runtime
estimator models the target machine by simulating super-scalar execution of the
code.

A final optimization technique applied to the output of Optimizer II is the
reordering of memory access instructions to avoid address generation interlocks
in assembly code.

Basic Block Instruction Scheduling

It is a highly demanding task to find a good execution order of instructions
while (i) preserving data dependencies, (ii) efficiently utilizing execution units,
and (iii) taking multiple instruction issue properties into account. This has to
be considered whenever an optimal instruction schedule is to be created. The
instruction scheduler of Fftw-Gel aims at single basic blocks.

The Processor Execution Model. As hardware properties not only differ
from one vendor to another but also from one processor model to the next, it
is laborious to implement a specific version of an optimizing backend for any
single processor model. Fftw-Gel comes up with this issue by introducing a
corresponding execution model for each target processor. These models specify
(i) how many instructions can be issued per clock cycle, (ii) the latency of
each instruction, (iii) the execution resources required by each instruction, and
(iv) the available resources. For the sake of simplicity, the execution models do
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not take address generation resources into account. In fact, the models assume
that enough address generation units (AGUs) are available at any time.

List Instruction Scheduling. Fftw-Gel’s instruction scheduler uses the
information provided by the execution model to decide whether a given sequence
of n instructions can be issued within the same cycle and executed in parallel
by means of super-scalar execution while avoiding resource conflicts.

An instruction issue is possible if and only if (i) n is less or equal the number
of processor slots per cycle, and (ii) enough distinct execution resources are
available.

A local list scheduling algorithm is used as basically described in [10] and [12].
It utilizes information about critical path lengths of the underlying data depen-
dency graph in a heuristic scheme to select instructions to be scheduled. The
basic principles of this approach will be described in the following.
Instruction State. An instruction can be either in (i) ready state, (ii) preready
state, or (iii) waiting state at a time. An instruction in ready state may be issued
any time as its source data is already available. An instruction is in preready state
if all instructions generating any of its source operands are already issued, but
at least one of them is not yet finished. An instruction is in waiting state if at
least one of its source producers is not yet issued.
Time Step. One time step corresponds to one clock cycle. At the outset, the
time step counter is set to zero. As time steps advance, a state transition from
waiting to preready and from preready to the ready state is imposed on every
instruction. The time step is advanced, i. e., a new cycle is started, if and only if
(i) there are no more ready instructions that can be issued without giving rise to
an execution unit conflict, or (ii) when there are no more free instruction issue
slots this cycle.
Issue Priority Heuristic. The issue priority heuristic selects among all ready
instructions the instruction with (i) the longest critical path, and (ii) the suit-
ability to be issued simultaneously with the instructions already selected earlier
in the same time step according to their constraints.

One scheduling step of the list scheduling algorithm of Fftw-Gel’s backend
performs the following:

The process starts with time step 0.

(1) As long as there are ready instructions suitable to be issued and free issue
slots are available, let the issue priority heuristic choose instructions to be issued
in the current time step.

(2) Increase the time step and perform the instruction state transitions from
waiting to preready and preready to ready state.

(3) If there are instructions left to be scheduled, commence with Step (1).

As the instruction scheduler is capable of guessing when every instruction will be
executed with the help of the execution model, it serves as a basis for estimating
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the runtime of the entire basic block. The estimated runtime, i. e., the time
step value at the end of the scheduling process, can be used for controlling the
optimization described in the following.

Direct Usage Of In-Memory Operands

After instruction scheduling and the succeeding low-level code motion, in-
memory operands are directly applied. This results in an additional low level
optimization.

As there is only a small number of physical registers available and many
CISC instruction sets like those of Intel’s Pentium 4 and Pentium 5, as well
as AMD’s K7 allow one source operand of an instruction to reside in memory,
using in-memory operands can be advantageous. Usage of in-memory operands
enables (i) to reduce register pressure, and (ii) to reduce the total number of
instructions by merging one load and one use instruction into one load-and-use
instruction.

Nevertheless, using in-memory operands can be harmful in some cases affect-
ing both code size and performance. This may happen when (i) register files are
not fully utilized, and (ii) superfluous loading of data occurs.

The goal is to use in-memory operands instead of registers for source operands
if the data is accessed by only one instruction.

Register Reallocation

Register allocation is performed previous to instruction scheduling and the direct
usage of in-memory operands in SIMD instructions. As instruction scheduling
changes instruction order only locally, the spills and reloads of registers stay
consistent and optimal. Due to the usage of in-memory operands, the utilization
of the register file may not be optimal any more as entries in the register file are
not referenced any longer, i. e., their usage as source operands is substituted by
operands from memory.

Taking this observation into consideration, the register file assignments are
reoptimized by performing register reallocation for SIMD registers. As the spills
remain consistent and optimal, the task of allocation is simplified. The register
reallocation does not have to take care about spills and reloads and reallocation
can be performed using an LRU replacement strategy. Moreover, the reallocator
has to perform a renaming of registers (i) to sustain the register’s future usage
dependencies, and (ii) to preserve the spills and reloads computed in the register
allocator.

Integer instructions and the integer register file assignment remain un-
changed, as direct use of in-memory operands has only been performed for SIMD
instructions.
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Avoiding Address Generation Interlocks

Current super-scalar microprocessors like Intel’s Pentium 4 and Pentium 5, as
well as AMD’s K7 allow out-of-order execution. Nevertheless, instructions ac-
cessing memory, i. e., loads and stores, must still be executed in-order.

Problems may evolve whenever a memory operation involving expensive ef-
fective address calculation directly precedes a memory operation with cheap or
no effective address calculation. In such cases, both memory operations are de-
layed for the duration of the first, expensive effective address calculation. An
address generation interlock (AGI) occurs.

Example (Address Generation Interlock) Assume the following unoptimized x86
assembly code in AT&T-assembler syntax:

movq (%eax,%edx,8), %mm1 /* I1 */

movq (%eax), %mm2 /* I2: interlocked */

As instructions I1 and I2 are (read-after-write, write-after-read, and write-after-write)

independent, one would expect them not to interfere with each other. However, as the

Intel Pentium architecture definition requires load and store instructions to be executed

in-order, the instruction I2 is forced to wait until instruction I1 has calculated its

effective address and both dependent memory operations are stalled meanwhile.

Fftw-Gel tries to avoid address generation interlocks by reordering instructions
immediately after instruction scheduling. The calculation of effective addresses
does not involve constant costs on the Intel Pentium processors. Calculating
effective addresses not involving shift operations by some constant factor are
cheaper than those that do. Taking this knowledge into consideration, instruc-
tions are reordered.

Example (Optimized Address Generation) In the reordered code

movq (%eax), %mm2 /* I2: AGI avoided */

movq (%eax,%edx,8), %mm1 /* I1 */

from the above example, the order of the instructions has been adapted so that I2

occurs before I1 in the program text. Thus, the memory operation waiting for the

result of I2 can almost immediately proceed without having to wait for the expensive

calculation of I1 to finish.

5 Experimental Results

Numerical experiments were carried out to demonstrate the applicability and
the performance boosting effects of the newly developed compiler techniques [7].

Fftw-Gel was investigated on two IA-32 compatible machines: (i) An Intel
Pentium 4 featuring SSE 2 two-way double-precision SIMD extensions [7], and
(ii) an AMD Athlon XP featuring 3DNow! professional two-way single-precision
SIMD extensions (see Fig. 2).
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Fig. 2. Floating-point performance of the newly developed K7/Fftw-Gel (3DNow!)
compared to Fftpack and Fftw 2.1.3 on a 1.53 GHz AMD Athlon XP 1800+ carrying
out complex-to-complex FFTs in single-precision. Performance data are displayed in
pseudo-Gflop/s, i. e., 5N log N/T .

Fig. 2 shows the performance of Fftpack, Fftw 2.1.3, and K7/Fftw-Gel
on the Athlon XP in single-precision. The runtimes displayed refer to powers
of two complex-to-complex FFTs whose data sets fit into L2 cache. The newly
developed K7/Fftw-Gel utilizes the enhanced 3DNow! extensions which pro-
vide two-way single-precision SIMD operations. Fftw-Gel is about twice as
fast as Fftw 2.1.3, which demonstrates that the performance boosting effect of
vectorization and backend optimization is outstanding.

Very recently, experiments were carried out on a prototype of IBM’s Blue-
Gene/L (BG/L) top performance supercomputer. Fig. 3 shows the relative per-
formance of Fftw 2.5.1 no-twiddle codelets.

IBM’s XLC compiler for BlueGene/L using code generation with SIMD vec-
torization and with FMA extraction (using the compiler techniques [8]) some-
times accelerates the code slightly but also slows down the code in some cases.
Fftw-Gel’s vectorization yields speed-up values up to 1.8 for sizes where the
XLC compiler’s register allocator generates reasonable code. For codes with more
than 1000 lines (size 16, 32, 64) the performance degrades because of the lack of
a good register allocation.

Conclusion

This paper presents a set of compilation techniques for automatically vectorizing
numerical straight line code. As straight line code is in the center of all current
numerical performance tuning software, the newly developed techniques are of
particular importance in scientific computing.
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Fig. 3. Speed-up of (i) the newly developed BlueGene/L Fftw-Gel vectorizer with
FMA extraction (but without backend optimizations) and (ii) Fftw codelets vector-
ized by XLC with FMA extraction compared to (iii) scalar Fftw codelets using XLC
without FMAs, and without vectorization. The experiment has been carried out running
no-twiddle codelets.

Impressive performance results demonstrate the usefulness of the newly de-
veloped techniques which can even vectorize the complicated code of real-to-
halfcomplex FFTs for non-powers of two.
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Special thanks to Manish Gupta, José Moreira, and their group at IBM T. J.
Watson Research Center (Yorktown Heights, N.Y.) for making it possible to
work on the BG/L prototype and for a very pleasant and fruitful cooperation.

The Center for Applied Scientific Computing at LLNL deserves particular
appreciation for ongoing support.

Additionally, we would like to acknowledge the financial support of the Aus-
trian science fund FWF.

References

1. Belady, L.A.: A study of replacement algorithms for virtual storage computers. IBM
Systems Journal 5 (1966) 78–101
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