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ABSTRACT

The altitude of a moving vehicle as reported by GPS suffers
from intermittent errors caused by temporary obstruction of
the satellites by buildings, mountains, etc. Additionally, it
is affected by systematic errors caused by multipath effects,
ionospheric and tropospheric effects, and other hardware de-
sign limitations and natural factors.

Atmospheric pressure, measured by a portable baromet-
ric sensor, could also be used to determine altitude, is not
susceptible to problems caused by obstruction of satellites,
and can provide reliable measurements outdoors even in ur-
ban and mountainous regions.

In this paper, we propose an algorithm which improves
accuracy and provides tighter confidence bounds of altitude
measurements from a mobile phone (or any device equipped
with GPS and barometric sensors) by means of sensor fusion
techniques without the need for calibration.

Our experiments have shown that the proposed algorithm
provides more accurate measurements with tighter confidence
bounds compared to using either of the two sensors, baromet-
ric or GPS, alone.

1. INTRODUCTION

Sensor fusion techniques are used to combine information
from multiple sources (sensors) with the goal of improving
accuracy or reliability over the results from an individual
source. A good introduction into the subject of sensor fusion
is given in [1], and more details on its mathematical methods
can be found in [2].

In this paper, will consider a realistic scenario where a ve-
hicle (or a pedestrian) is moving outdoors on the earths sur-
face. The movement trajectory is assumed to be smooth in
altitude and not to feature sudden altitude jumps. The vehicle
must be equipped with GPS and atmospheric pressure sen-
sors, such as can be found in many modern mobile phones,
like Samsung Galaxy S4 and Google Nexus 4.

This material is based on research sponsored by DARPA under agree-
ment number FA8750-12-2-0291. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

We will a apply sensor fusion approach to this particular
scenario. Our algorithm will use knowledge of how these two
particular sensors behave. Some of assumptions about alti-
tude sensor behaviour are shown in the following table:

Feature GPS Barometric

Affected by obstructions Yes No
Always available No Yes
Biased No Yes
Bias drifts with weather No Yes
Typical accuracy 5m[3] 0.17-0.5m[4]
Accuracy reported by sensor Yes No

Our approach is based on the premise that barometric
altitude measurements provide more accurate information
on relative altitude changes compared to GPS. It does have
measurement noise, but the magnitude of this noise is typ-
ically significantly smaller than that of GPS measurements.
However, an accurate estimation of absolute altitude based
on measurements of barometric pressure requires calibration.
Such calibration is valid for only limited time periods due
to natural changes in the atmospheric pressure caused by
weather.

However we can use GPS to dynamically “calibrate”
barometric measurements to reflect true absolute altitude.
Using statistical properties of GPS and barometric mea-
surements as well as some assumptions about the effects of
weather, we derive confidence intervals for fused measure-
ments. Then, using these intervals, we define a cost function
which is used to optimize the temporal window size used in
fusion.

In related work Yao[5] integrated barometric altitude
measurements as a virtual satellite into GPS position calcu-
lations. Our approach does not replace GPS position cal-
culation and could be used on top of other GPS accuracy
improvement models[6], as well as with other GNSS systems
like GLONASS. In other related work Gebre-Egziabher[7]
presents an empirical barometric altitude confidence bound
based on historical meteorological data without attempting to
estimate the altitude.

We claim that our algorithm achieves the following:

1. Resulting fused altitude measurements will typically



have tighter tolerance intervals, compared to GPS sen-
sor alone.

2. Resulting fused altitude measurements will typically
have more accurate absolute values, compared to baro-
metric sensor alone.

3. The algorithm provides not only fused absolute altitude
values, but also statistical confidence intervals.

Additionally benefits of our approach are that the altitude
could be estimated accurately even when GPS signal is tem-
porarily lost (dead zones). This is an online algorithm which
could be used in real-time and the calibration step is not re-
quired.

2. THE ALGORITHM

Sensor Fusion

Let the true (unknown) altitude at time t be a(t). We will
use g(t) to denote GPS altitude measurements at time t. Ac-
cording to Android API documentation[8] they are normally
distributed: g ⇠ N (a,�2

g

).
Without loss of generality, we will assume GPS measure-

ments are sampled at fixed intervals with the sample number
i being an altitude g[i] and standard deviation �

g

[i]. The sam-
ples are numbered in reverse order with i = 1 being the most
recent. The algorithm could be easily adopted for variable
rate sampling.

Similarly, we will model the barometric altitude as b ⇠
N (a + �,�2

b

). Here, � denotes the unknown bias of baro-
metric altitude measurements. Unlike GPS, the variance �2

b

is
not provided by the sensor and is unknown.

We will start by estimating the parameters of the g(t) dis-
tribution using MLE based on the last n samples. The pooled
variance and the sample mean (biased) are:
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Next, we will estimate the parameters of the b(t) distribu-
tion using MLE based on the last m samples.

Here, m and n denote the number of GPS and barometric
samples, respectively, for a given time interval. Generally
speaking, m  n, because the barometric measurements are
always available, even when GPS measurements are missing.

Sample mean and sample variance (biased) are
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Now, estimate the value of � as: ˆ
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estimated value is the sum of two normally distributed ran-
dom variables. Such a sum will be also distributed normally:
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We obtain the corrected altitude for sample i as: â[i] =

b[i] + ˆ

�. This value as the sum of two normally distributed
random variables will have distribution:
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Ordinary Least Squares Variance Correction

The sample variance estimation in Equation (3) estimates the
spread of b values relative to the horizontal line b = µ

b

which
corresponds to a vehicle moving on a horizontal plane. How-
ever, if the vehicle ascends or descends (e.g. car climbing a
hill), this method is not suitable for estimation of Gaussian
noise in b. Intuitively, the correct approach would be to es-
timate the variance orthogonal to the direction of the move-
ment.

First, we fit a straight line through the {b1 . . . bm} using
the ordinary least squares method. According to the Gauss-
Markov theorem, this is the best linear unbiased estimator
(BLUE). This would give us ↵ and � parameters of a linear
model ˆb = �t+ ↵. Residual errors of such fit are ✏ = b� ˆb.

Under the normality assumption, the first and second mo-
ments of the � distribution could be estimated as[9]:
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To determine how ✏ errors affect b measurements, we need
to project them vertically to the fitted line as shown in Fig-
ure 1:

✏
b
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p
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Now, we will estimate the variance of ✏
b

. To do so, let us
set k(�) =

p
1 + �2, so we can write:

✏
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Fig. 1. Geometric interpretation of ✏ and ✏
b

.

Since ✏ and k are independent, the variance of their prod-
uct is[10]:
var(✏

b

) = var(✏k)

= [E(✏)]2var(k) + [E(k)]2var(✏) + var(✏)var(k)

(9)

In the equation above, E(✏) and var(✏) could be estimated
using sample statistics as:

µ
✏

=

1

m

mX

i=1

✏[i] =
1

m

mX

i=1

(b[i]� �t[i]� ↵) (10)

s
✏

=

vuut 1

m

mX

i=1

(✏[i]� µ
✏

)

2

=

vuut 1

m

mX

i=1

(b[i]� �t[i]� ↵� µ
✏

)

2 (11)

Treating k as a function of random variable �, it is pos-
sible to estimate the first and the second moments, E(k) and
var(k) respectively, using first order Taylor’s expansions[11]:
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Substituting (12,13) into (9) and using values obtained by
(5,6,10,11), we get the final formula for var(✏

b

) which we
will be using instead of s

b

in (4):
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Experimental results of variance correction using the

method described above are shown in Figure 2. The dashed
blue line shows s

b

(uncorrected), and the red line shows
var(✏

b

) (corrected) :
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Fig. 2. Results of variance correction using ordinary least
squares.

Atmospheric Pressure Drift

So far, we have been assuming that while atmospheric pres-
sure has Gaussian noise, it does not change over time, if the
vehicle is stationary. In real life, however, barometric pres-
sure fluctuates with atmospheric conditions. Luckily these
fluctuations are rather slow, compared to the pressure changes
caused by the vehicle ascending or descending.

We used a well-known empirical formula, used in aerospace
industry[12] to convert barometric pressure p to barometric
altitude b:

b(p) = 44330.8� 4946.54p0.1902632 (15)

Let us assume that the maximum natural change of atmo-
spheric pressure p

h

is 400 hPa per hour.
The function in Equation (15) is non-linear, but contin-

uous and monotonically decreasing with p. We estimate the
maximum drift of barometric altitude from the initial value p0
over time t as:
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Optimization

One of our goals was to minimize the tolerance interval of the
estimated altitude â[i]. For a normally distributed variable,
the tolerance interval is usually expressed as the number of
standard deviations D. The probability that a value lies less
than D standard deviations away from the mean is erf( Dp

2
).

For a given D, minimizing the standard deviation from
Equation (4):
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will shrink the tolerance region.



Before trying to minimize this function, let us consider the
physical meanings of m and n. These variables will control
the number of previous samples we will consider. Intuitively,
we want to increase these values to get a smaller variance.
However, our algorithm acts as a low-pass filter on g, and
bigger values of n would cause us to miss subtler changes in
the GPS-measured altitude.

As the value of m increases, the duration of the time in-
terval we are considering also increases. Let us denote it as
�t = t1 � t

m

. Using Equation (16), we estimate the max-
imum potential natural drift of the barometric altitude over
time t. Thus, the tolerance region of the estimated altitude
value needs to be extended by potential barometric altitude
drift. For a given â[i], the tolerance region would extend to:
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Since we only have access to sampled values of b and g,

this cost function for each sample could only be minimized
empirically through a simple iterative algorithm:

1. Vary value m from experimentally chosen m
min

and
m

max

values. Our experiments have shown that the
respective values, 10 and 200, are sufficiently big, as
the cost maxima typically lies below that.

2. Find the number of GPS measurements n in the time
interval corresponding to each m.

3. For each m and corresponding n estimate error using
Equation (17)

4. Choose m corresponding to the smallest error and esti-
mated altitude using Equation (4)

Typical plot of J for different values of m is shown in
Figure 3.
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Fig. 3. Dependency of altitude estimation error from m.

3. EXPERIMENTAL RESULTS

To test our algorithm, we recorded multiple datasets using the
Samsung Galaxy S4 and Google Nexus 4 phones. Datasets
were recorded while hiking, bicycling, and riding in a car in
both urban and mountainous environments in and around the
San Francisco Bay Area. In order to debug the algorithm on
flat terrain, additional datasets were recorded on board a boat
cruising in San Francisco Bay.

Typical experimental results are shown in Figure 4. GPS
altitude measurements are shown in dashed black and baro-
metric in dotted green. A 68% confidence bounds of GPS
measurements, as reported by sensor, is shown in yellow. The
altitude corrected by our algorithm is shown in blue, along
with an estimated 68% confidence bounds, shown in pink.

Fig. 4. Confidence bounds or GPS, barometric, and fused
altitude measurements.

Conclusion

Our experiments have shown that by using the proposed
algorithms, we were able to obtain corrected altitude mea-
surements which have confidence bounds on average 85%
smaller than the confidence bounds of the original GPS mea-
surements.
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