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Abstract—As technology scaling is reaching its limits, pointing
to the well-known memory and power wall problems, achieving
high-performance and energy-efficient systems is becoming a
significant challenge. Especially for data-intensive computing,
efficient utilization of the memory subsystem is the key to achieve
high performance and energy efficiency. We address this challenge
in DRAM-optimized hardware accelerators for 1D, 2D and 3D
fast Fourier transforms (FFT) on large datasets. When the dataset
has to be stored in external DRAM, the main challenge for FFT
algorithm design lies in reshaping DRAM-unfriendly memory
access patterns to eliminate excessive DRAM row buffer misses.
More importantly, these algorithms need to be carefully mapped
to the targeted platform’s architecture, particularly the memory
subsystem, to fully utilize performance and energy efficiency
potentials. We use automatic design generation techniques to
consider a family of DRAM-optimized FFT algorithms and their
hardware implementation design space. In our evaluations, we
demonstrate DRAM-optimized accelerator designs over a large
tradeoff space given various problem (single/double precision
1D, 2D and 3D FFTs) and hardware platform (off-chip DRAM,
3D-stacked DRAM, ASIC, FPGA, etc.) parameters. We show
that generated pareto-optimal designs can yield up to 5.5x
energy consumption and order of magnitude memory bandwidth
utilization improvements in DRAM, which lead to overall system
performance and power efficiency improvements of up to 6x and
6.5x respectively over conventional row-column FFT algorithms.

I. INTRODUCTION

Single and multidimensional Fast Fourier Transforms
(FFT) are important computational kernels to accelerate in
hardware for scientific data analysis, digital signal process-
ing and high performance computing applications. For large
problem sizes, the computation proceeds in stages by trans-
ferring portions of the dataset to and from off-chip DRAMs
continuously. Standard multi-stage FFT algorithms require
large strided DRAM accesses, which inefficiently utilize the
DRAM row buffer. There exist novel DRAM-optimized FFT
algorithms, which can make full use of each opened DRAM
row (e.g. [1], [2]). The core idea of these algorithms is to
use a tiled data layout that removes strided memory accesses.
Making full use of each opened DRAM row minimizes the
number of row buffer misses which substantially reduces
the energy consumption and allows achieving close to the
theoretical peak memory bandwidth.

Efficient use of the memory subsystem being the key chal-
lenge, high-performance and energy-efficient accelerators re-
quire well-balanced implementations where none of the overall
system components are over-provisioned or under-utilized. The
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overall system consists of two main components: (i) on-chip
computation resources (i.e. arithmetic units and local SRAM)
and (ii) main memory (i.e. DRAM). Specifically, (i) throughput
and parallelism of computation, and (ii) row buffer locality and
bank level parallelism in DRAM are the key aspects of the
design space which determine the balance of the overall sys-
tem. Control over (i) computation and (ii) DRAM utilization is
achieved via algorithmic and architectural design parameters
(e.g. tile parameters of tiled FFTs, streaming width, frequency,
etc.). However, inherent tradeoffs between the algorithmic and
architectural parameters lead to rich possibilities in the design
space. Different FFT problems on different hardware platforms
require special attention and design effort which makes a single
efficient solution unachievable. Existing work either focuses
on a specific platform/problem ([1], [3], [4]) or targets a
generic but simplistic machine model [2]. Further, these works
primarily aim high performance implementations. Achieving
both high-performance and energy-efficient implementations
on various platforms, on the other hand, is only possible
through careful mapping of the algorithms to the architectures
by analyzing the rich design tradeoffs.

Contribution. This paper evaluates the energy/performan-
ce potentials and the key design tradeoffs in mapping DRAM-
optimized FFT algorithms (1D, 2D and 3D) to different
hardware platforms (e.g. off-chip DRAM, 3D-stacked DRAM,
ASIC, FPGA) using automated techniques. We modify Spiral
[5] to automatically generate the hardware implementations of
the DRAM-optimized FFT algorithms. By using the automatic
design generation framework, the designer can tradeoff various
architectural and algorithmic parameters to achieve a goal of
performance or power efficiency, under a given limited budget
of memory bandwidth, power and hardware resources. Study-
ing the designs using synthesis at the Verilog RTL level, we
show the rich tradeoff possibilities in the design space and the
opportunity for DRAM-specific optimizations to yield an order
of magnitude memory bandwidth utilization and 5.5x energy
consumption improvements in DRAM, which lead to overall
system performance and power efficiency improvements of up
to 6x and 6.5x respectively over conventional row-column FFT
algorithms.

Paper outline. Section II first surveys the related prior
work. Section III offers background on FFTs and on DRAM
memory systems. Then, Section IV discusses DRAM-friendly
FFT algorithms. Section V provides the architecture and
algorithm design space details. Section VI presents our ex-
perimental results including (a) power/performance tradeoffs
for various problem and platform configurations, (b) DRAM-
specific and overall system improvements, (c) actual hardware
implementations of the generated accelerators on FPGA. Fi-



nally, Section VII offers our conclusions.

II. RELATED WORK

There have been many implementations of single and
multidimensional FFTs on various platforms. These include
software implementations on CPUs [6], GPUs [7], and super-
computers [8], and hardware implementations based on ASIC
[9], [4] or FPGA [1]. Further there are studies on design
automation frameworks for FFTs. These include hardware
generators; kernel level [10], or system level [3], and software
generators [5].

Most of these works are limited for the problem sizes
where the dataset can be stored on-chip, and do not consider
design challenges for the efficient use of DRAM. For example,
[9], [10] explore design space tradeoffs for on-chip problem
sizes. [3] indeed addresses the memory bandwidth problem
but not at a level of detail that includes DRAM row-buffer
effects. [2] provides a formal tensor framework for large
FFTs targeting a simple machine model and [1] implements a
DRAM-optimized tiled algorithm for 2D-FFT on FPGA. Also
[4] proposes an implementation using 3D-stacked DRAM.
However these works either target a specific platform/problem,
or a generic but simplistic machine model. They do not analyze
the algorithm and architecture design tradeoffs and their effects
on system power/energy and performance in detail. However,
achieving high-performance and energy-efficient implementa-
tions on various platforms requires careful mapping of the
algorithms to the architectures by analyzing the rich design
tradeoffs. In this work, we use automated techniques to explore
both performance and power/energy potentials of DRAM-
optimized FFT accelerators on various hardware platforms.

III. BACKGROUND

Fast Fourier transform. Mathematically speaking, n point
discrete Fourier transform is defined as the multiplication of n
complex element input vector with n × n complex element
DFT matrix to produce n complex element output vector.
Computation of DFT by direct matrix-vector multiplication
requires O(n2) arithmetic operations. There exists well-known
fast Fourier transform (FFT) algorithms that compute the DFT
more efficiently in O(n log n) operations [11].

Multidimensional DFTs can also be considered as simple
matrix-vector multiplications. Similar to single dimensional
DFT, multi dimensional DFTs can be computed efficiently
using multidimensional FFT algorithms. For example the well-
known row-column algorithm for 2D-DFT can be summarized
as follows [11]: Abstracting the input and output vectors as
n × n arrays, firstly n point 1D-FFTs are applied to each
of the n rows. Then, taking the results generated by the first
stage as inputs, n point 1D-FFTs are applied to each of the n
columns. The overall operation is demonstrated in Figure 1(a).
Assuming a row-major data mapping to DRAM, first stage
results in sequential accesses whereas second stage leads to
stride n accesses which is demonstrated in Figure 1(b).

Similarly well-known 3D decomposition algorithm for 3D-
DFT is computed as follows: Considering the dataset as
n × n × n cube on x-y-z space, firstly, n point 1D-FFTs
are applied to each of the n2 stripes in x direction. Then
again n point 1D-FFTs are applied to each of the n2 stripes
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Fig. 1. Overview of row-column 2D-FFT computation.

in y direction and finally the same is done in z direction.
Note that similar to the 2D-FFT, each stage takes the results
generated by the previous stage as inputs. The overall operation
is demonstrated in Figure 2(a). If we assume a sequential data
mapping in x-y-z direction of the data cube to the DRAM,
first stage corresponds to sequential accesses however second
and third stages requires stride n and stride n2 accesses
respectively, which is demonstrated in Figure 2(b).
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Fig. 2. Overview of 3D-decomposed 3D-FFT computation.

In the above, we have discussed decomposing large 2D
and 3D-FFTs into small 1D-FFT stages whose intermediate
dataset portions fit in the fast on-chip SRAM. A large 1D-FFT
whose dataset do not fit in on-chip SRAM requires similarly
decomposing into smaller 1D-FFT kernels and exhibits the
memory access pattern behavior discussed for 2D-FFT [11].
For example a 2-stage Cooley-Tukey algorithm for n2 point
1D-FFT can be summarized as follows: First, n-many n point
1D-FFTs are followed by a data permutation step on n2

elements. Then, n-many n point 1D-FFTs follow a twiddle
factor multiplication step. Here, the data permutation step
requires stride n accesses. Hence, from memory access pattern
point of view, overall operation is very similar to 2D-FFT
computation (see Figure 1(a) and (b)).

DRAM operation. As shown in Figure 3, DRAMs are
divided hierarchically into (from top to bottom): rank, chip,
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Fig. 3. Overview of off-chip DRAM organization.
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Fig. 4. Locality/parallelism vs. bandwidth, power and energy tradeoffs for
DDR3-1600 DRAM (1.5V, single rank, 8 bank, x8 width) [12].

bank, row, and column. DRAM chips within a rank contributes
to a portion of the DRAM word; they are accessed parallel in
lock-step to form the whole word. Each bank within a DRAM
chip has a row buffer which is a fast buffer holding the lastly
accessed row in the bank. If the accessed bank and row pair
are already active, i.e. the referenced row is already in the row
buffer, then a row buffer hit occurs reducing the access latency
considerably. On the other hand, when a different row in the
active bank is accessed, a row buffer miss occurs. In this case,
the DRAM array is precharged and the newly referenced row
is activated in the row buffer, increasing the access latency
and energy consumption. Therefore, to minimize the energy
consumption and to achieve the maximum bandwidth from
DRAM one must minimize the row buffer misses. In other
words, one must reference all the data from each opened
row before switching to another row by exploiting the spatial
locality in the row buffer.

In addition to the row buffer locality (RBL), bank level
parallelism (BLP) has a significant impact on the DRAM
bandwidth and energy utilization. Given that different banks
can operate independently, one can overlap the latencies of the
row precharge and activate operations with the data transfer on
different banks. BLP enables high bandwidth utilization even if
the RBL is not fully utilized provided that the accesses are well
distributed among banks. However, frequently precharging and
activating rows in different banks increase the power and total
energy consumed.

Figure 4 demonstrates the impact of RBL/BLP on DRAM
bandwidth, power and energy consumption. In this experi-
ment contiguous blocks of data are transferred from DRAM,
where adjacent blocks are perfectly distributed among different
banks. Therefore, the size of the data block corresponds to
the number of elements referenced from an opened row. In
Figure 4 we observe that the achieved bandwidth increases
with RBL (i.e. size of the data blocks) and/or BLP (i.e. number
of banks to which the data blocks are distributed). If the BLP is
limited (e.g. accesses are concentrated on a single bank), then
RBL must be maximized to reach the maximum bandwidth. On
the other hand, if the blocks are well distributed among banks,
the maximum bandwidth can be reached with smaller block
sizes, but with the cost of additional bank precharge/activate
operations. Figure 4 also shows the energy consumption in
Joules/GByte which corresponds to the total energy spent in
transferring unit GB of data. Both BLP and RBL decrease total
static energy by transferring the same amount of data faster, yet
RBL is the key to reduce the total activate/precharge energy.

From the DRAM perspective maximizing both BLP and
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Fig. 5. Overview of the 3D-stacked DRAM organization.

RBL leads to the optimal use, however transferring and
operating on large data blocks (to maximize RBL) can be
costly from a computational perspective. As we will see,
tradeoff possibilities in parallelism (BLP) and locality (RBL)
is critical to achieve the best performance per power for the
overall system which includes both off-chip DRAM and on-
chip computation.

3D-stacked DRAM is an emerging technology where
multiple DRAM dies and logic layer are stacked on top and
connected by TSVs (through silicon via) [13], [14], [15], [4].
TSVs allow low latency and high bandwidth communication
within the stack without I/O pin count concern. Fine-grain
rank-level stacking, which allows individual memory banks
to be stacked in 3D, enables fully utilizing the internal TSV
bandwidth [16], [13]. As shown in Figure 5, fine-grain rank-
level stacked 3D-DRAM consists of Nstack DRAM layers
where each layer has Nbank DDR3 DRAM banks, and each
bank has its own NTSV-bit data TSV I/O. Vertically stacked
banks share their TSV bus and form a vertical rank (or
sometimes referred as vault [13]). Hence, the overall system is
composed of Nbank ranks where every rank has its own NTSV-
bit TSV bus and can operate independently.

Internal operation and the structure of 3D-DRAM banks are
very similar to the regular DRAMs (see Figure 3) except some
of the peripheral circuitry is moved down to the logic layer
which enables achieving much better timings [16]. Another
interesting distinction of the 3D-stacked DRAM is that the
banks within a rank can operate in pseudo-parallel, time
multiplexing the shared TSV bus, contributing to the aggregate
bandwidth additively by exploiting the high bandwidth TSVs
[4]. As a result, row buffer misses in a bank become visible as
reduced bandwidth in the corresponding rank which can only
be amortized by fully utilizing opened row buffers. Hence,
3D-stacked DRAMs are more vulnerable to the strided access
patterns.

IV. DRAM-OPTIMIZED FFTS

Strided accesses required by the conventional FFT algo-
rithms lead to precisely the worst-case behavior in DRAM
(Figure 1, Figure 2). One needs to change the spatial locality
of the memory accesses in order to avoid inefficient strided
access patterns by altering the data mapping in memory [1],
[2]. We use tiled and cubic memory mapping schemes for FFTs
to avoid strided accesses and transfer large contiguous chunks
of data from the memory.

As shown in Figure 6, tiled and cubic data layouts are
simply block data layouts where the datasets are abstracted as
multidimensional data arrays and divided into smaller blocks
(i.e. tiles or cubes). For example, in the tiled layout, n2 element
vectors are abstracted as a n × n element matrix which is
divided into k×k element tiles (Figure 6(a)). Similarly, in the
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cubic layout, n3 element vectors are abstracted as a n×n×n
element data cube which is divided into k × k × k element
cubes (Figure 6(b)). The elements within blocks are mapped
into consecutive locations in DRAM and blocks are distributed
among different DRAM banks. When each logical block is
physically mapped to a DRAM row, transferring a block from
DRAM corresponds to transferring a whole row from DRAM.

Large size single and multidimensional FFTs when decom-
posed into smaller stages require strided memory accesses.
These FFTs can be performed while avoiding strided accesses
by using block data layouts. (i) Remembering that when each
tile (cube) is mapped to a DRAM row, transferring tiles (cubes)
in any order (i.e. 1 , 2 and 3 in Figure 6) corresponds to
making use of the whole DRAM rows. (ii) Once tiles (cubes)
are transferred to on-chip SRAMs, they can be shuffled freely
since on-chip SRAMs do not incur any extra penalty depending
on the access patterns. Hence, by combining the two properties
(i) and (ii), one can perform the memory access pattern
schemes required by multi-stage FFT algorithms efficiently.
Note that these algorithms require full row or column of tiles
(cubes) to be held simultaneously in the fast on-chip memory
(SRAM) so that the 1D-FFTs can be done SRAM-resident.

[2] provides a formal derivation of these algorithms tar-
geting a simplistic machine model and [1] proposes a FPGA
based 2D-FFT implementation. Both of these works simply
maximize locality in the DRAM via large tile sizes for high
performance. Large tiles require large on-chip storage which
incurs an energy overhead. As we will see later, these DRAM-
optimized algorithms need to be specifically fitted to the
platform parameters exploiting both locality and parallelism
tradeoffs to be high-performance and energy-efficient.

V. ALGORITHM AND ARCHITECTURE DESIGN SPACE

In this section we explain our design generation methodol-
ogy, accelerator architecture and the key algorithm/architecture
design space parameters.

A. Design Generator

We use Spiral [5] formula generation and optimization
framework to automatically derive details of the DRAM-
optimized FFT algorithms and generate hardware implemen-
tations. Spiral uses formal representation of FFT algorithms in
tensor notation and restructures the algorithms using rewrite
rules. We express the DRAM optimizations that are described
in Section IV in tensor notation and integrate them into the
Spiral framework as rewrite rules. Spiral formally derives the
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Fig. 7. Overview of the design generator tool.

DRAM-optimized 1D, 2D and 3D-FFT algorithms, however
the formal details of the algorithm generation is beyond the
scope of this paper. Lastly, we build a custom backend that
translates the hardware datapath formula to the full system
described in Verilog.

The overall view of our compilation flow is shown in Figure
7. First, the input FFT problem is expanded as a formula
tagged with hardware parameters. At this point the formula is
a high-level generic representation that does not have explicit
implications for the hardware. Then this formula is restructured
using our custom DRAM optimization extension rules as well
as selected Spiral default rules. After this step we reach a final
structured formula where each formula construct is labelled
with its targeted hardware module. Lastly, the custom backend
generates the hardware components for the labelled formula
constructs in Verilog targeting the parameterized architecture
shown in Figure 8. In addition to the inferred hardware struc-
tures, the backend generates necessary wrappers, glue logic
and configuration files that will interconnect all the modules
and configure the full system.

B. Formula to Hardware

The architecture that we target (shown in Figure 8) is
highly parameterized and scalable which can be configured
for the given problem/platform parameters.

DRAM controllers. In Figure 8, without loss of generality,
we provide a dual channel architecture featuring two DRAM
controllers. Throughout the computation, one of the DRAM
controllers is used for reading the inputs and the other one is
for writing the outputs to DRAM in parallel. When a stage is
completed, the two DRAM controllers switch their read/write
roles for the next stage repeatedly until the computation is
finished. Note that dual channel architecture is an abstraction
of the actual underlying hardware, multiple DRAM channels
can be bundled together or a single DRAM channel can be
split into two to fit in this abstraction.

Depending on the optimizations that are used, a memory
mapping scheme is represented in the generated hardware
formula. The RTL generator translates this representation
and configures the address mapping module in the DRAM
controller (see Figure 8).

Local memories. DRAM-optimized algorithms used in
this work require holding multiple tiles (cubes) on-chip at
once to apply data permutation and 1D-FFT on the local
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data. Local memories are local fast buffers constructed from
SRAM and connection networks serving for that requirement.
Implementing the streaming data permutation operations by
using minimal storage and avoiding bank conflicts is a non-
trivial task. We use techniques described in [17] to generate
the permutation memories automatically.

Local memories also construct the interface between the
FFT core and the DRAM controller and allow the decoupling
between the two. We employ double-buffering technique in
the local memories. Hence, the computation and data transfer
operations are overlapped to maximize the system throughput.

FFT Core. We generate the streaming 1D-FFT core au-
tomatically using [10]. Control over the FFT core parameters
(radix r, streaming width w) allows us to adjust the compu-
tation throughput according to the data transfer bandwidth to
create balanced designs.

1D-FFT algorithm for large problem sizes requires a sepa-
rate twiddle multiplication step when decomposed as discussed
in Section III. The FFT core is augmented by a separate
twiddle factor multiplication unit for that case as shown in
Figure 8. Note that for large problem sizes, twiddle factor
ROM sizes becomes too large to fit on-chip. We use logic-
in-memory units based on [18] to compress and interpolate
twiddle factors for large 1D-FFTs.

C. Design Space Parameters

There are several ways of architecting a system to achieve a
given goal of performance or power efficiency for a given FFT
problem and hardware resources. Control over the adjustable
design parameters allows walking within the space of various
design possibilities. Some of the important design parameters
can be categorized as follows:
• Throughput: FFT radix (r), streaming width (w), fre-

quency (f ).
• Bandwidth: Type of tiling (2D, 3D), tile size (T )
• Algorithm: Algorithmic choices provided by Spiral (A)
In addition to the adjustable design parameters, there are

also given problem and platform constraints:
• Problem: FFT type (1D, 2D, 3D), size (n), precision (p)
• Platform: DRAM banks (b), row buffer size (R), max

bandwidth (B), max power (P ), max on-chip SRAM (S)
As we will see, exploring such a design space constructed

by the given problem/platform constraints and design param-
eters is extremely difficult considering the relations between
them and the costs associated with adjusting every parameter.
An automated design generation and exploration is essential

8192x8192 2D-FFT Design Space 
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Fig. 9. Design space exploration for 2D-FFT with 3D-stacked DRAM.
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to cover this wide design space and decide the most efficient
parameters.

VI. EVALUATION

Experimental setup. Before going into the details of
design space exploration we first explain our experimental
methodology. We use a modified version of Spiral to generate
designs for a given problem. Then, we synthesize the generated
HDL targeting a commercial 32nm standard cell library using
Synopsis Design Compiler following the standard ASIC syn-
thesis flow. In addition to the standard ASIC synthesis flow, for
non-HDL components, we use tools such as: CACTI 6.5 for
on-chip RAMs and ROMs [19], McPAT for DRAM memory
controllers [20], and DesignWare for single and double preci-
sion floating point units [21]. We target both off-chip DDR3-
DRAM and 3D-stacked DRAM as main memory. For off-chip
DRAM we use DRAMSim2 [22] and Micron Power Calculator
[23] to estimate DRAM performance and power consumption.
For the 3D-stacked DRAM model we use CACTI-3DD [16].
Lastly, for the overall performance estimation, we use a custom
performance model backed up by cycle-accurate simulation.
All of the tools are integrated resulting in an automatic push-
button end-to-end design generation and exploration tool.

Exploration. First, we present an example design space
for a selected 2D-FFT hardware implementation using 3D-
stacked DRAM. Given problem parameters are 8192 × 8192
point complex single-precision (2 × 32 − bits per complex
word) 2D-FFT, and the platform parameters are 4 layer, 8
banks/layer, 512 TSVs/bank, 8192 bit row buffer (Nstack =
4, Nbank = 8, NTSV = 512, R = 1KB) fine-grain rank-level
3D-stacked DRAM. Further we set S = 8MB and P = 40W.

Problem and platform parameters are the basic inputs to
the generator. Spiral handles the algorithmic design choices
(A) and prunes the algorithms which are determined to be
suboptimal at the formula level. Then, for the given input
configuration, it generates several hardware instances varying
the design space parameters. A subset of the design space
is shown in Figure 9 in terms of performance (GFLOPS)
and power consumption (Watt) for various streaming width
(w = 2, 4, 8, 16), frequency (f = 0.4GHz → 2GHz), radix
(r = 2) and tile size (T = 0.125× → 2 × row buffer size)
parameters.

Figure 9 also provides isolines for constant power effi-
ciency, in other words achieved performance per consumed
power (GFLOPS/Watt). We observe that there are multiple
design points on the constant power efficiency lines, which
suggests that the same power efficiency can be achieved
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(b) Tile Size and Performance/Power Tradeoff (3D-stacked DRAM, conf-E) 
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Fig. 10. Effect of tile size on performance and power efficiency for off-chip and 3D-stacked DRAM systems. (Rest of the parameters are fixed.)

with different parameter combinations. There are also several
suboptimal designs that are behind the pareto frontier. Hence,
it is not obvious which parameter combinations will yield the
most efficient system at the design time. This highlights the
complexity of the design space.

To further elaborate on the design space tradeoffs, we first
illustrate the effects of the tile size in tiled FFT algorithms
(see Section IV) on the performance and power efficiency for
different system configurations in Figure 10 (see Table I for
memory configurations). (i) DRAM and (ii) on-chip resources
are two main components of the overall system: (i) Increasing
the tile size improves the spatial locality in DRAM accesses
through efficient use of the row buffer. Efficient use of the row
buffer leads to minimal activate/precharge operations which
improve the bandwidth utilization and energy efficiency in
DRAM, and consequently improve overall system performance
and energy efficiency. (ii) On the other hand, from the on-chip
resources viewpoint, local memory needs to be large enough
to hold larger tiles which increases power consumption. Ad-
ditionally, larger local memory needs to be filled and emptied
in the beginning and at the end of the overall computation
pipeline which decrease the performance. Conflicting tradeoffs
in determining the tile size construct an optimization problem.

Moreover, different platform and problem configurations
have different optimization curves. For example, power con-
sumption of smaller problem size configurations are heavily
dominated by the DRAM power consumption hence it is
more desirable to improve the DRAM power consumption
with larger tiles. Whereas larger problem size configurations
prefer smaller tile sizes to save the on-chip power consumption
(see Figure 10). Different platform configurations can also
have different tradeoff relations. For example, BLP allows
overlapping row buffer miss delays with data transfer on
different banks. Therefore one can maximize the performance
even if the RBL is not fully utilized, with the extra energy
cost of activate/precharge operations in DRAM (see Fig-
ure 10(a)). However, in 3D-stacked DRAM, banks within a
rank contributes additively to the aggregate bandwidth exploit-
ing the high bandwidth TSV bus as discussed in Section III.
Therefore, unlike off-chip DRAMs, low RBL utilization (i.e.
small tiles) reduces the performance significantly as shown in
Figure 10(b).

Determining the memory subsystem configuration, partic-
ularly tile size in our case, is a key component in achiev-
ing high performance and energy efficiency, but computation
configuration poses a great importance as well to achieve a

TABLE I. MAIN MEMORY CONFIGURATIONS.
Name Configuration (off-chip DRAM) tCL-tRCD-tRP Max BW

Chan/Bank/R(Kb)/width/Type (ns) (GB/s)

conf-A 8 / 8 / 64 / x8 / DDR3-1600 13.8-13.8-13.8 102.4
conf-B 8 / 8 / 64 / x8 / DDR3-1333 15.0-15.0-15.0 85.36
conf-C 8 / 8 / 64 / x8 / DDR3-800 12.5-12.5-12.5 51.2

Name Configuration (3D-stacked DRAM) tCL-tRCD-tRP-tTSV Max BW
Nstack/Nbank/NTSV/R(Kb)/Tech(nm) (ns) (GB/s)

conf-D 4 / 8 / 256 / 8 / 32 12.2-7.89-16.8-0.68 178.2
conf-E 4 / 8 / 512 / 8 / 32 12.2-7.89-16.8-0.68 305.3
conf-F 4 / 8 / 512 / 8 / 45 14.2-9.23-19.1-0.92 246.7
conf-G 4 / 8 / 256 / 32 / 32 11.8-21.9-16.4-0.68 229.5

balanced design. In a balanced design, computation throughput
needs to match the estimated bandwidth utilization. One can
pick different parameter combinations that will achieve the
same throughput matching the given DRAM bandwidth. In
Figure 11, given a fixed fixed tile size and platform/problem
parameters (i.e. fixed DRAM bandwidth), we demonstrate
design instances with various frequency and streaming width
parameters. As highlighted in Figure 11 the most efficient
parameter combinations show variations for different prob-
lem/platform configurations.

Finding the best system configuration given the prob-
lem/platform constraints establishes an optimization problem.
Simply chasing the highest performance or lowest power
consumption is not sufficient to get the most efficient system.
As it is shown in Figure 10 and Figure 11, careful study
of the design space is necessary to understand the tradeoffs.
It is difficult to determine the crossover points where one
of the dependent parameters becomes more favorable to the
others and there is no structured way of finding the best
parameter combinations. This highlights the importance of an
automatic design generation and exploration system–it would
be extremely difficult to complete such design exploration by
hand.

Pareto-optimal designs. We automatically generate
pareto-optimal DRAM-optimized implementations and evalu-
ate their performance and energy/power efficiency for the main
memory as well as for the overall system. Our experiments
include various main memory configurations which are shown
in Table I. Firstly, the overall system performance and power
efficiency comparison of the naive baseline and the DRAM
optimized implementations for 1D, 2D and 3D-FFTs of various
sizes with regular off-chip DDR3 DRAMs and 3D-stacked
DRAMs are demonstrated in Figure 12. DRAM-optimized
implementations are generated by Spiral for the given problem
and platform parameters. The same on-chip hardware resources
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(c) 2kx2k FFT using conf-C 
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(a) 8kx8k FFT using conf-E 
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(b) 8kx8k FFT using conf-D 
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Fig. 11. Frequency (f) and streaming width (w) effects on power and performance for various problem/platform configurations (fixed tile size). Parameter
combinations for the best design (GFLOPS/W) are labelled.

and the same memory configurations are provided both for
the baseline and the DRAM-optimized implementations. How-
ever, baseline implementations have naive unoptimized DRAM
access patterns in contrast to DRAM-friendly access patterns
of the optimized implementations. Further, DRAM-optimized
implementations are “pareto-optimal” such that they are specif-
ically fitted to the target platform for the best performance
per power (i.e. GFLOPS/Watt) by the design generator tool.
Although the best designs in terms of power efficiency vary
depending on the problem and platform configurations as
shown in Figure 12, generated DRAM-optimized designs can
achieve up to 6.5x and 6x improvements in overall system
performance and power efficiency respectively over naive
baseline implementations. Also, to provide a point of reference,
modern GPUs and CPUs can achieve only a few GFLOPS/W
for the problem sizes that we are concerned with [1], [24].
For example, cuFFT 5.0 on the recent Nvidia K20X reaches
approximately 2.2 GFLOPS/W where machine peak is 16.8
GFLOPS/W [25]. On the other hand, our DRAM-optimized
hardware accelerators achieve up to nearly 50 GFLOPS/W (see
Figure 12).

Improvements particularly in the main memory is the core
of our framework. In Figure 13, pairs of bars compare DRAM-
optimized (opt) and naive baseline (nai) implementations for
various memory configurations (see Table I). The results show
that the DRAM-optimized accelerators for 1D, 2D and 3D
FFTs can achieve up to 7.9x higher bandwidth utilization and
5.5x lower energy consumption in main memory for off-chip
DRAM, and up to 40x higher bandwidth utilization and 4.9x
lower energy consumption in main memory for 3D-stacked
DRAM. As discussed in Section III, due to their vulnerability
to the strided access patterns, 3D-stacked DRAMs achieve bet-
ter improvement through optimized access patterns. Another
interesting point is that the generated 1D, 2D and 3D FFT
designs have very similar efficient tiled access patterns which
allow them to achieve a bandwidth and energy efficiency near
theoretical maximum. Consequently, in Figure 13 we observe
that optimized implementation for different FFTs with the
same memory configuration reach almost the same DRAM
bandwidth and energy consumption.

In Figure 13, the bars representing DRAM energy con-
sumption are broken into segments as refresh, read/write, acti-
vate/precharge and static energy consumption. An important
observation is that the activate/precharge energy is signifi-
cantly reduced, almost eliminated, compared to the baseline.
Effective usage of DRAM row buffer in our DRAM-optimized
implementation leads to very low row buffer miss rate which
significantly reduces the total activate/precharge energy con-
sumption. As expected, read/write energy stays the same since
the same amount of data is read/written in both naive and

TABLE II. PERFORMANCE RESULTS FROM ALTERA DE4.
FFT Prec. TP Perf (% of TP) Model Est. (Error)

(bits) (GFLOPS) (GFLOPS) (GFLOPS)

256 × 256 32 32 23.25 (72.6%) 23.15 (-0.41%)
512 × 512 32 36 29.23 (81.2%) 29.31 (+0.27%)
1k × 1k 32 40 34.42 (86.0%) 34.74 (+0.94%)
2k × 2k 32 44 38.35 (87.2%) 39.54 (+3.10%)
4k × 4k 32 48 42.10 (87.7%) 43.89 (+4.25%)

256 × 256 64 16 12.47 (77.9%) 12.53 (+0.48%)
512 × 512 64 18 14.97 (83.2%) 15.10 (+0.85%)
1k × 1k 64 20 17.19 (86.0%) 17.40 (+1.19%)
2k × 2k 64 22 19.23 (87.4%) 19.50 (+1.40%)

128 × 128 × 128 32 28 23.40 (83.6%) 23.69 (+1.22%)
256 × 256 × 256 32 32 26.89 (84.0%) 27.24 (+1.30%)
512 × 512 × 512 32 36 30.30 (84.2%) 30.70 (+1.32%)

optimized implementations. DRAM-optimized systems have
higher bandwidth utilization which allows them to finish the
data transfer quicker, saving total refresh and static energy
consumption.

Complete design flow. We demonstrate our complete
design flow by starting with high level problem and hardware
platform specifications, then generating designs automatically
and finally implementing and running them on an actual
hardware. We target the Altera DE4 FPGA platform featuring
a Stratix IV FPGA (4SGX530) interfaced to 2 channels of
DDR2-800 DRAMs. Table II demonstrates the results from ex-
ample implementations including single and double precision
various size 2D and 3D FFTs. Under the column TP (theoret-
ical peak), for each FFT problem, we report the performance
numbers for an idealized platform with perfect main memory
that has the bounded bandwidth (same as DE4) but no row
buffer miss penalty or refresh penalty, and infinitely fast on-
chip processing. We also provide the achieved performance in
percentage of TP performance to give an absolute sense of
quality.

Performance model verification. We now verify the per-
formance model used in the design space exploration against
the results from the actual hardware implementations. For
performance estimations, DE4 platform parameters and FFT
problem parameters are input to performance model. Perfor-
mance estimation results from the model are given in Table II
under column “model est.”. When the performance estimations
and the actual hardware results are compared, the error is found
to be less than %4.25 for the designs that are generated and
implemented on DE4.

VII. CONCLUSION

Main memory bandwidth is a common performance bot-
tleneck for single and multi dimensional FFT hardware accel-
erators. To address that problem, prior work propose DRAM-
optimized FFTs that reshapes DRAM-unfriendly access pat-
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Fig. 12. Overall system performance and power efficiency comparison between naive and DRAM-optimized implementations for 1D, 2D and 3D FFTs using
memory configurations conf-A and conf-D respectively.
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Fig. 13. DRAM energy and bandwidth utilization for naive (nai) and DRAM-optimized (opt) implementations of selected FFTs and memory configurations.

terns to eliminate row buffer misses. However, these solutions
either tuned for a specific problem and platform, or target a
simplistic machine model. Achieving high-performance and
energy-efficient implementations on different platforms, on
the other hand, requires careful fitting of these DRAM-
optimized FFT algorithms to the targeted architectures. Given
the rich implementation possibilities and interdependent design
parameters, there is no structured way of determining the
best configuration. This paper evaluates the design space
tradeoffs and energy/performance potentials of the DRAM-
optimized FFT accelerators using automated techniques for
1D, 2D and 3D FFTs on different platforms (off-chip DRAM,
3D-stacked DRAM, ASIC, FPGA). Our experimental results
show that generated pareto-optimal designs offer significant
improvements in performance and power efficiency.
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