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Abstract. HELIX is a formally verified language and rewriting engine
for generation of high-performance implementation for a variety of nu-
merical algorithms. Based on the existing SPIRAL system, HELIX adds
the rigor of formal verification of its correctness using the Coq proof as-
sistant. It formally defines a series of domain-specific languages starting
with HCOL, which represents a computation data flow. HELIX works
by transforming the original program through a series of intermediate
languages, culminating in LLVM IR. In this paper, we will focus on
three intermediate languages and the formally verified translation be-
tween them. Translation between these three languages is non-trivial,
because each subsequent language introduces lower-level abstractions,
compared to the previous one. During these steps, we switch from pure-
functional language using mixed embedding to a deep-embedded impera-
tive one, also introducing a memory model, lexical scoping, monadic error
handling, and transition from abstract algebraic datatype to floating-
point numbers. We will demonstrate the design of these languages, the
automatic reification between them, and automated proofs of semantic
preservation, in Coq.

1 Introduction

With the current level of sophistication of hardware architectures, the problem of
high-performance implementation of numerical algorithms becomes challenging
for manual implementation even when using optimizing compilers and is often
solved by specialized code generation systems, such as SPIRAL [13].

Developed over the last 20 years, the SPIRAL system has been used to gen-
erate, synthesize, and autotune programs and libraries. It works by translating
rule-encoded high-level specifications of mathematical algorithms into highly
optimized/library-grade implementations. SPIRAL has been used to formalize
a variety of computational kernels from the signal and image processing do-
main, including graph algorithms, robotic vehicle control, software-defined radio
(SDR), numerical solution of partial differential equations. SPIRAL is capable
of generating code for multiple platforms ranging from mobile devices and mul-
ticore (desktop and server) processors to high-performance and supercomputing
systems [7].



2 Vadim Zaliva, Ilia Zaichuk, and Franz Franchetti

When SPIRAL is applied to generate high-performance libraries used in mis-
sion critical software, the question arises as to what kind of assurances could be
made about the correctness of the generated code. The goal of HELIX, as a part
of the High Assurance SPIRAL project [5,11], is to formally prove of the correct-
ness of SPIRAL optimizations and code generation using Coq proof assistant.

Both SPIRAL and HELIX work by transforming an original formula through
a series of intermediate languages, culminating in machine code, as shown in
Figure 1. The translation steps correspond to different levels of abstraction:

1. Mathematical formula

2. The dataflow (SPIRAL: OL language, HELIX: HCOL language)

3. The dataflow with implicit loops: (SPIRAL: Σ-OL language, HELIX: Σ-
HCOL language

4. Imperative program: (SPIRAL: iCode language, HELIX: FHCOL language)

5. Mainstream programming language code: (SPIRAL: C Program, HELIX:
LLVM IR program)

The dataflow language is very close to mathematical notation and can rep-
resent a wide class of relevant mathematical formulae. As a first step, SPIRAL
attempts to deconstruct the original expression into simpler expressions, which,
combined by a function composition, represent a data-flow graph of the com-
putation [8]. The resulting expression is then translated into another language,
called Σ-OL which adds the implicit representation of iterative computations.
Next, the Σ-OL expression is rewritten using a series of rewrite rules, driven
by the extensive knowledge base of SPIRAL’s optimization algorithms, into a
shape which lends itself to generating the most efficient code for the target
platform. Subsequently, an Σ-OL expression is compiled into an intermediate
imperative language. By doing this, SPIRAL converts the dataflow graph into a
sequence of loops and arithmetic operations. Finally, an intermediate imperative
language representation, after some additional transformations, yields a C pro-
gram which is compiled with an optimizing compiler, producing an executable
high-performance machine code implementation of the original expression.

Legend: F-future work

Fig. 1. SPIRAL/HELIX transformation stages
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This paper describes the design of a part of the HELIX system, a formally
verified version of SPIRAL. Implementing such a system broadly consists of
defining and formalizing all intermediate languages, writing translators between
them, and proving semantic preservation of each such translation. The scope of
this paper is shown by the shaded box labeled “This paper” of Figure 1. The
definition of HCOL and Σ-HCOL languages and proving correctness of their
translation was addressed in previous papers: [16,17]. This paper focuses on
MHCOL, DHCOL, and FHCOL languages. Unlike SPIRAL, HELIX uses LLVM
IR instead of C as the last intermediate translation step. This decision was
based on the ease of formally proving the semantics preservation of this step.
Some features that SPIRAL relies upon still have no adequate formalization in
CompCert [10], the most developed formally verified C compiler. On the other
hand Vellvm [19] project provides almost all LLVM IR formalization we require.
Even though we already developed the FHCOL to LLVM IR compiler, its design
and verification will be addressed separately in future papers.
The main contributions we present in this paper are:

1. Demonstration of a working approach to semantics-preserving, two-step
translation from a mixed-embedded dependently-typed purely functional
language to a deep-embedded imperative one.

(a) The initial translation of Σ-HCOL into an intermediate MHCOL lan-
guage lowering the abstraction level by introducing lower-level data rep-
resentation and error handling.

(b) Subsequent compilation of MHCOL into DHCOL language. Formaliza-
tion of memory model, type system, evaluation contexts, and small-step
operational semantics of the target language. Mapping algebraic abstrac-
tion of partial computations via sparse vectors into independent memory
updates. Formalizing and proving the notion of semantic preservation
between MHCOL’s denotational semantics and DHCOL’s small step op-
erational semantics.

2. Demonstration of a framework for switching from abstracted reals and nat-
ural numbers to IEEE 754 floating-point numbers and fixed bit-length ma-
chine integers. Our approach with two versions of the same language param-
eterized by different types provides a convenient framework for numerical
stability and overflow-safety proofs.

2 The Approach

We start with Σ-HCOL language. It is a purely functional operator language
with mixed embedding in Coq and is built around the concept of operators from
multi-linear algebra, which are defined as maps on vector spaces [6]. It operates
on finite length sparse vectors of abstract carrier type. Our intermediate goal is
to compile it (via intermediate languages) into an imperative DHCOL program
suitable for LLVM IR translation. This undertaking involves several distinct
challenges:
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1. Translating a purely functional program into imperative language.
2. Mapping the layout of Σ-HCOL data to DHCOL memory and variables.
3. Mapping Σ-HCOL sparse vector abstraction to partially initialized memory

blocks.
4. Switching from mixed to deep embedding.
5. Handling errors.
6. Switching from carrier type to IEEE 754 floating-point numbers.
7. Switching from natural numbers to fixed bit-length machine integers.
8. Proving semantic equivalence between the original Σ-HCOL expression and

the generated DHCOL program.

In this paper, we will discuss how these challenges were addressed, what tech-
nical decisions were made, and the lessons learned. The translation is performed
via series of intermediate languages, as shown in Figure 1.

With each step, the level of abstraction moves from purely mathematical
operations on abstract algebraic types down towards LLVM IR instructions op-
erating on registers and memory locations. The semantic preservation is proven
from each language to the next one in the chain.

Our source Σ-HCOL [17] language is mixed-embedded in Coq and purely
functional. The main data type is a finite length sparse vector of carrier type
values. Σ-HCOL programs have no error handling, since potential error situa-
tions, like out-of-bounds vector index access, are eliminated by strong, dependent
typing.

In Σ-HCOL, we use sparse vectors as an abstraction for partial computations.
Each operator can perform a computation of some elements of a vector, leaving
others undefined. To perform algebraic transformations on Σ-HCOL expressions,
sparsity is rigorously tracked, but sparse (undefined) vector elements are assigned
implicit “default” value [17]. While such default values are used in algebraic
equational theory that supports underlying Σ-HCOL rewriting rules, they are
not supposed to contribute to the final result, which must depend solely on dense
(defined) elements of input vectors.

The 15 Σ-HCOL operators are listed with their informal descriptions below:

1. IdOp – no-op.
2. Embed i n – Takes an element from a single-element input vector and puts

it at a specific index in a sparse vector of given length.
3. Pick i – Selects an element from the input vector at the given index and

returns it as a single element vector.
4. Scatter f – Maps elements of the input vector to the elements of the output

according to an index mapping function f . The mapping is injective but not
necessarily surjective. That means the output vector could be sparse.

5. Gather f – Works in a similar manner to Scatter, except the index mapping
function f is used in the opposite direction – to map the output indices to
the input ones.

6. SHPointwise f – Similar to the map function in Haskell.
7. SHBinOp f – Similar to the map2 function in Haskell, applied to the first and

the second half of the input vector.
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8. SHInductor n f – Iteratively applies given function f to the input n times.

9. liftM HOperator hop – “lifts” HCOL operators, so they can be used in
Σ-HCOL expressions.

10. HTSUMUnion sop1 sop2 – A higher-order operator applying two operators to
the same input and combining their results (discussed in more detail below).

11. SafeCast sop – A higher-order operator, wrapping another Σ-HCOL opera-
tor. While it does not change the values, computed by the wrapped operator,
it adds a monadic wrapper to track sparsity properties3.

12. UnSafeCast sop – Similar to SafeCast but uses a different monadic wrap-
per3.

13. IUnion f (fam: {x:nat|x<n} → SHOperator) – Iteratively applies in-
dexed family of n operators to the input and combines their outputs element-
wise using the given binary function f. This is an abstraction for parallel
loops.

14. IReduction f (fam: {x:nat|x<n} → SHOperator) – Similar to IUnion

but without assumption of non-overlapping sparsity.

15. SHCompose sop1 sop2 – Functional composition of operators.

Let us consider more closely the example of the Σ-HCOL operator,
HTSUMUnion. It is a higher-order operator parameterized by the two operators,
f and g. Given an input vector, the operator applies them both to the vector
and combines their results using vector union, as shown in Figure 2.

Fig. 2. HTSUMUnion in Σ-HCOL

In structurally correct Σ-HCOL expression, it is guaranteed (proven) that
both inputs to such a union will have disjoint sparsity patterns which guaran-
tees that we will never try to combine two non-sparse elements. The structural
correctness property is an invariant of the previous steps in the HELIX process-
ing chain, and the Σ-HCOL expressions that we are dealing with are guaranteed
to satisfy it.

3The details of our monadic approach to sparsity tracking are out of scope of this
paper, but discussed in detail in [17].
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3 MHCOL: an Intermediate Language

Sparse vectors in Σ-HCOL are an algebraic abstraction for memory blocks. We
make this explicit in an intermediate mixed-embedded language, MHCOL (M
stands for memory). Each memory block is represented as a dictionary in which
the keys are memory offsets and the values are memory values of a carrier type.
There is no mapping for keys corresponding to sparse values.

An examples of both representations is shown in Figure 3. It shows a sparse
vector with three initialized elements, A, B, and C, and a dictionary with three
corresponding keys.

Fig. 3. Sparse vectors as dictionaries

HTSUMUnion in MHCOL is shown in Figure 4. Each of the two operators f

and g, applied to the input vector x, produces a corresponding dictionary, and
the two dictionaries have disjoint keys: [0; 2] and [1; 3], respectively. They are
then combined into the final resulting dictionary y.

Fig. 4. HTSUMUnion in MHCOL

With this change of data representation, we move away from the algebraic
nature of Σ-HCOL towards a lower-level representation. In this representation,
an actual value must be associated with a key in a dictionary before it can
be accessed. Trying to access an uninitialized key is an error. It means that
MHCOL operators could return errors and thus have a type: mem block →
option mem block. However, we prove that our translation of structurally correct
Σ-HCOL programs produces MHCOL programs that do not err when applied
to sufficiently initialized memory blocks.
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Like in Σ-HCOL, we use mixed embedding [4] (a combination of shallow and
deep embedding) to represent MHCOL operators. The following record type is
used (we assume the reader is familiar with Coq):

Record MSHOperator {i o: N} : Type := mkMSHOperator {

mem_op: mem_block → option mem_block;

mem_op_proper: Proper ((equiv) =⇒ (equiv)) mem_op;

m_in_index_set: FinNatSet i;

m_out_index_set: FinNatSet o; }.

It is indexed by dimensions of input and output memory blocks. The fields
include: a function implementing the operation on memory blocks which can fail
(returning None); a proper morphism [3] for this function with respect to the
setoid equality equiv (required because the carrier type is abstract); and the
two sets which define input and output memory access patterns.

All MHCOL operator implementations must satisfy certain memory
safety properties. We have formulated these properties as the typeclass,
MSHOperator Facts, and proven instances of it for all operators. This is a similar
approach to what we took with Σ-HCOL, but the properties are different:

1. When applied to a memory block with all memory cells in m in index set

mapped to values, mem op will not return an error.
2. The mem op must assign a value to each element with index in

m out index set and must not assign a value to any element with index
not in m out index set

3. The output block of mem op is guaranteed to contain no values at indices
outside of operators’ declared output size.

The semantic equality for a pair of Σ-HCOL and MHCOL operators is de-
fined as the SH MSH Operator compat typeclass. It ensures that they have the
same dimensionality, the same input and output patterns (index sets), and struc-
tural correctness of Σ-HCOL and MHCOL operators (by the presence of respec-
tive SHOperator Facts and MSHOperator Facts instances). In addition to these
properties, the main semantic equivalence statement to be proven is:

mem_vec_preservation:

∀ (x:svector i),

(∀ (j: N) (jc: j < i), in_index_set sop (mkFinNat jc) → Is_Val (Vnth x jc))

→
Some (svector_to_mem_block (op sop x)) = mem_op mop (svector_to_mem_block x)

Informally it could be stated as:

For any vector which complies with the input sparsity contract of the
Sigma-HCOL operator, an application of the MHCOL operator to such
vector, converted to a memory block, must succeed and return a memory
block which must be equal to the memory block produced by converting
the result of the Σ-HCOL operator.
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For regular operators, SH MSH Operator compat instances could be
proven directly. For higher-order operators, the proofs are predicated on
SH MSH Operator compat assumptions for all operators involved. Some opera-
tors may have additional prerequisites. For example, for HTSUMUnion, output
index sets of f and g must be disjoint.

Translation from Σ-HCOL to MHCOL, is implemented using the Coq meta-
programming plugin, TemplateCoq [2]. For translated programs, we use proof
automation to prove that SH MSH Operator compat holds between the original
and the compiled programs. This approach is known as translation validation.

4 DHCOL: an Imperative Language

The next language in the translation sequence is called DHCOL (D stands
for deep-embedded). While Σ-HCOL and MHCOL have one-to-one correspon-
dence between the operators, this no longer holds true for Σ-HCOL to DHCOL.
DHCOL is a lower-level language, so each MHCOL operator is translated into
not one but a sequence of DHCOL operators. Another distinction is that DHCOL
is deep embedded. However, a more important difference is that it is no longer
functional but imperative. The execution model assumes an environment (vari-
ables) and memory. The operators can have side effects, modifying the memory
but not the environment.

The language design decisions for DHCOL were guided by the needs of an
intermediate representation language between MHCOL and LLVM IR. It is not
meant to be a general-purpose programming language and contains only features
required to represent DHCOL programs. By constraining it in such way, we have
kept it small and made it easier to prove statements about it.

Our earlier example, HTSUMUnion operator, could be viewed imperatively
as a sequential execution of two operators and a combination of their results.
Since output key index sets are guaranteed not to overlap, these operators could
be computed independently (or even in parallel) and could write to the same
output dictionary, as shown in Figure 5, without the risk of overwriting each
others’ results.

Finally, because we need to work with multiple memory blocks, we organize
them into a memory, which is just a dictionary of memory blocks. Such a two-
level hierarchical memory model is very similar to the memory model used in
CompCert [10] and Vellvm [19].

In addition to memory, there is an evaluation context which holds all variables
in scope. Variables are typed and can hold natural numbers, carrier type values,
and memory pointers.

We provide small-step operational semantics of DHCOL by an
evalDSHOperator: evalContext → DSHOperator → memory → fuel →
option (err memory) function which, given an evaluation context, a memory
state, and an operator, returns a modified memory state. It uses fuel to make
it easier to prove that it always terminates. It should be noted that a semantic
step is expressed as a transition between memory states. The environment stays
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Fig. 5. HTSUMUnion in DHCOL

unchanged, and operator side effects are limited to modifying memory values.
The reason for that is the design of the language; variables are statically scoped
and are in single static assignment (SSA) form.

The reification of MHCOL to DHCOL is also implemented using Template
Coq. In addition to operators, we translate arithmetic expressions on natural
numbers and carrier type values. During expression translation, we enforce the
restriction that only supported operations like + are allowed. A high-level reifi-
cation and validation approach is discussed in [18].

The reification process is then invoked with the Run TemplateProgram

(reifySHCOL shcol "dhcol") command in Coq. It translates Σ-HCOL expres-
sion shcol and creates a new definition with the name dhcol initialized with its
DHCOL translation.

4.1 Definition

DHCOL expressions are made up of variables from an evaluation context (ref-
erenced by de Bruijn indices), operations (e.g., + and −), and constants. There
are four types of expressions: NExpr - expressions on natural numbers; AExpr -
expressions of carrier type values; PExpr - pointer expressions; and MExpr - mem-
ory block expressions. The first two, NExpr and AExpr, evaluate to natural and
carrier type values, respectively. The latter two, PExpr and MExpr, both eval-
uate to memory blocks. The variables in the evaluation context are typed and
could have one of three types: natural numbers, carrier type values, or pointers
to memory blocks.

The are ten DHCOL operators, defined by an inductive type shown in List-
ing 1.1.

Inductive DSHOperator :=

| DSHNop (* no-op *)

| DSHAssign (src dst: MemVarRef) (* memory cell assignment *)

| DSHIMap (n: N) (x_p y_p: PExpr) (f: AExpr) (* indexed [map] *)
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| DSHBinOp (n: N) (x_p y_p: PExpr) (f: AExpr) (* [map2] on two halfs of [x_p] *)

| DSHMemMap2 (n: N) (x0_p x1_p y_p: PExpr) (f: AExpr) (* [map2] *)

(* recursive application of [f]: *)

| DSHPower (n:NExpr) (src dst: MemVarRef) (f: AExpr) (initial: CT.t)

(* evaluate [body] [n] times. Loop index will be bound during body

eval: *)

| DSHLoop (n:N) (body: DSHOperator)

(* allocates new uninitialized memory block and makes the pointer to it

available in evaluation context at de Bruijn index 0 while the [body] is evaluated: *)

| DSHAlloc (size:NT.t) (body: DSHOperator)

(* initialize memory block indices [0-size] with given value: *)

| DSHMemInit (size:NT.t) (y_p: PExpr) (value: CT.t)

(* copy memory blocks. Overwrites output block values, if present: *)

| DSHMemCopy (size:NT.t) (x_p y_p: PExpr)

| DSHSeq (f g: DSHOperator) (* execute [g] after [f] *).

Listing 1.1. DHCOL operator type

4.2 Proof of Semantics Preservation

While the regular MHCOL operators translate to a single DHCOL instruction,
the higher-order operators translate into a sequence of instructions, with place-
holders filled with DHCOL translations of their respective parameters. For exam-
ple, MHCOL’s (MSHIReduction i o n z f op family) operator is compiled to
the following DHCOL program:

DSHSeq

(DSHMemInit o y_p z)

(DSHAlloc o (DSHLoop n (DSHSeq dop_family (DSHMemMap2 o y_p′ (PVar 1) y_p′ df)))))

The parameters of MSHIReduction above are: the dimensions of the input
and the output vectors (i and o respectively), the size n of the operator family
op family, and initialization value z. In DHCOL, df and dop family correspond
to f and op family, respectively, translated to DHCOL.

Operators DSHAlloc and DSHLoop introduce two new variables: the pointer
to newly allocated memory block and the loop index. Inside the loop they are
referenced by their respective de Bruijn indices as (PVar 1) and (PVar 0).
The dop family takes the loop index to access the family operator member to
evaluate on each iteration which is then executed writing output to temporary
memory block. The output of MSHIReduction is assumed to be written to a
memory block referenced by variable y p, and y p′ is the same variable with the
de Bruijn index increased by two (to accommodate for the loop index and a new
variable, holding a reference to the newly allocated temporary memory block).

We want to prove that our translation from MHCOL to DHCOL preserves
the semantics. As with other HELIX languages, we use automated translation
validation approach. To allow automatic proof of translation results, we need to
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prove correctness lemmas for each MHCOL operator and its DHCOL representa-
tion. Then, these lemmas could be applied recursively, hierarchically descending
the structure of the MHCOL reified expression.

The first step in the process is to formalize the notion of semantic equivalence
between the purely functional language with denotational semantics (MHCOL)
and the imperative language with operational semantics (DHCOL). Each MH-
COL operator is a function x 7→ y where x and y are memory blocks4. It is a pure
function without side effects, whose output y depends on x and other variables in
scope. On the other hand, a DHCOL translation of this MHCOL operator is an
imperative program that can read variables available in the evaluation context,
and it also can read and modify the memory. One block from this memory will
correspond to x, and some other block will correspond to y. Being a translation
of a pure function, the operator can modify only y. The formalization of the
class of DHCOL programs representing pure functions is expressed as DSH pure

typeclass:

Class DSH_pure (d: DSHOperator) (y: PExpr) := {

mem_stable: forall σ m m′ fuel,

evalDSHOperator σ d m fuel = Some (inr m′) ->

forall k, mem_block_exists k m <-> mem_block_exists k m′;

mem_write_safe: forall σ m m′ fuel,

evalDSHOperator σ d m fuel = Some (inr m′) ->

(forall y_i , evalPexp σ y = inr y_i ->

memory_equiv_except m m′ y_i)

}.

It has the following two properties:

◦ memory stability states that the operator does not free or allocate any mem-
ory blocks
◦ memory safety states that the operator modifies only the memory block

referenced by the pointer variable y, which must be valid in the environment,
σ.

Now, we can proceed to formulate the semantic equivalence between an MH-
COL operator and a “pure” DHCOL program. Since the MHCOL part of this
relation is a function, we need to universally quantify on all possible inputs.
Since DHCOL operators read and modify memory, the input and output of this
function must correspond to some existing memory blocks. In DHCOL memory,
locations could be accessed via pointer variables only, so we state that there are
two pointer variables in the evaluation context corresponding to the input and
output memory block locations. For convenience, we define semantic equivalence
as a type class parameterized by the respective MHCOL and DHCOL operators,
the evaluation context, and by the name of the input and output pointer vari-
ables in this context. Additionally, the purity of the DHCOL operator must be
guaranteed by providing a DSH pure instance.

4We omit error handling for now.
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Class MSH_DSH_compat

{i o: N} (σ: evalContext) (m: memory)

(mop: @MSHOperator i o) (dop: DSHOperator)

(x_p y_p: PExpr) ‘{DSH_pure dop y_p} := {

eval_equiv: ∀ (mx mb: mem_block),

(lookup_Pexp σ m x_p = inr mx) → (lookup_Pexp σ m y_p = inr mb) →
(h_opt_opterr_c

(λ md m’ ⇒ err_p (λ ma ⇒ SHCOL_DSHCOL_mem_block_equiv mb ma md)

(lookup_Pexp σ m’ y_p))

(mem_op mop mx)

(evalDSHOperator σ dop m (estimateFuel dop))); }.

In the listing above, h opt opterr c deals with error handling. While mem op

has simple error reporting via option type, evalDSHOperator has two-level er-
ror handling, distinguishing between running out of fuel and other errors. The
equality is defined if both operators err (for whatever reason) or both succeed, in
which case, their results must satisfy a provided sub-relation. The sub-relation
(expressed via lambda) does additional error handling via err p to ensure that
y p lookup succeeds in m′. Finally, the equality is reduced to the predicate
SHCOL DSHCOL mem block equiv relating mb, ma, and md.

Figure 6 shows the origin of these values in a case where no errors occur.
Legend: σ is an evaluation context, m and m′ are memory states before and after
execution of the evalDSHOperator. The ma corresponds to a memory block in m′

referenced by y p. The md is the result of applying the MHCOL operator to mx.

Fig. 6. DHCOL and MHCOL equality relation

To understand this relation, we must recall, that in Σ-HCOL, sparse vectors
represent the results of partial computation. Sparse elements correspond to as
yet uncomputed values, while dense elements are already computed. Performing
a union of the resulting sparse vectors represents the combining of several par-
tial computations. Replacing immutable vectors with mutable memory blocks
allows us to replace the operation of combining computation results with a sim-
ple memory update. Following this reasoning, the result of the MHCOL operator
application (called md, where “d” stands for delta) is a memory block contain-
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ing values only at the indices that we need to update. The values at all other
indices must remain unchanged. On the other hand, in DHCOL, we know the
memory state before the operator evaluation and the updated state after it has
been evaluated. Thus, SHCOL DSHCOL mem block equiv represents the relation
between:

◦ mb - memory state of the output block before DHCOL execution
◦ ma - memory state of the output block after DHCOL execution
◦ md - values of changed output block elements after MHCOL evaluation

This relation is implemented via the element-wise relation, MemOpDelta,
which is lifted to memory blocks as SHCOL DSHCOL mem block equiv:

Definition SHCOL_DSHCOL_mem_block_equiv (mb ma md: mem_block) : Prop

:= ∀ i, MemOpDelta

(mem_lookup i mb)

(mem_lookup i ma)

(mem_lookup i md).

Inductive MemOpDelta (b a d: option CarrierA) : Prop :=

| MemPreserved: is_None d → b = a → MemOpDelta b a d

| MemExpected: is_Some d → a = d → MemOpDelta b a d

Informally, it could be stated as:

For all memory indices in md where a value is present, the value at the
same index in ma should be the same. For indices not set in md, the value
in ma should remain as it was in mb.

Once we have proven SH MSH Operator compat instances for all MHCOL
operators and their corresponding DHCOL equivalents, we can automatically
generate proof for the result of any MHCOL to DHCOL translation as an in-
stance of this class top top-level MHCOL and DHCOL expressions. During this
proof automation, we need to recursively descend on an MHCOL expression. The
reason for this is that mapping between the two is not injective, and compiling
two different MHCOL operators could result in similar DHCOL constructs not
easily distinguishable by simple matching on the structure. Whereas MHCOL
operators could be uniquely matched.

5 Connecting the Dots: from FHCOL to LLVM IR

Dealing with floating-point numbers presents a distinct set of challenges. Instead
of introducing floating-point numbers from the very start, we work on an abstract
data type (generalized reals) up to and including DHCOL language. Switching to
floating-point numbers is done by introducing yet another intermediate language,
FHCOL (F stands for floating-point), which operates on IEEE 754 numbers.
FHCOL and DHCOL share the same memory model, but elements are now IEEE
754 floats instead of values of the abstract carrier type. This is still a higher level
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than that of the Vellvm memory model, which deals with bytes. However, the
FHCOL memory model can be unambiguously mapped to the Vellvm memory
model.

We apply a similar treatment to integers used in arithmetic expressions to
calculate memory indices. Since the indices are non-negative by definition, we
represent the integers as natural numbers in all intermediate languages up to
FHCOL, where we replace them with int64.

The translation between DHCOL and FHCOL is trivial, since both languages
are implemented as module instances parameterized by different types (for floats
and integers). They both a members of a language family indexed by numeric
types. This approach allows us to easily define both language syntax and seman-
tics without code duplication. It also allows some lemmas to proven for both
languages generally. The translation from DHCOL to FHCOL is implemented
in Gallina.

5.1 Correctness Proof using Numerical Analysis

The relation in the real domain between the results of the evaluation of the
structurally similar expressions in these two languages could encapsulate all
numerical analysis properties, such as error bounds and numerical stability.

For integers, we need to perform a very simple bounds check to avoid integer
overflows in the arithmetic expressions. The ranges of arithmetic expressions
could be estimated based on the ranges of their components. In DHCOL, these
components are either constants or loop indices. Since loop indices are also bound
by constant loop dimensions, overflow analysis is possible.

For floating-point numbers, we identified three approaches. None have yet
been implemented, and all represent future research directions.

1. Offline Uncertainty Propagation. In the most general case, an uncertainty
propagation approach could be applied [9]. Using it, we can estimate error
bounds for compiled FHCOL expressions. Unfortunately, in many cases, the
error bounds are too large to be useful for practical applications. This analysis
could be very easily plugged into our verification framework at the DHCOL to
FHCOL verification step.

2. Problem-specific Error Estimation. One of the primary intended uses of HE-
LIX is to validate cyber-physical systems. In such settings, the problem do-
main could inform additional physical constraints which will allow us to provide
stronger guarantees, such as tighter error bounds. Therefore, instead of trying to
solve this problem in general, we will allow users to plug in their own reasoning,
by providing a lemma which guarantees that for a particular expression and its
value ranges, the floating-point approximation meets the user’s given criteria.
This analysis could be implemented by a user and plugged into our verification
framework at the DHCOL to FHCOL verification step.
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3. Online Uncertainty Propagation. This approach is similar to the Abstract
Interpretation on interval domain, where the values are represented as intervals
which are computed at runtime. The result of the computation is not a single
value but an interval. Because it is computed for concrete values, it is usu-
ally much narrower than one estimated using offline uncertainty propagation.
In some cases, it could be proven that it is smaller than the machine epsilon
of the floating-point representation, collapsing the output interval into a single
floating-point number. The price of this approach is that additional computa-
tions have to be performed at runtime affecting the performance. The unique
advantage of HELIX here is that such computations could be compiled into
highly efficient parallelized and vectorized code using SPIRALs optimizations.
For this approach, we will introduce yet another language named IHCOL which
replaces the abstract data type with an interval represented as two IEEE float-
ing point numbers for its bounds. Compared to other approaches, implementing
this approach will require greater changes to HELIX, including a new LLVM
compiler and its verification.

5.2 Compiling to LLVM IR

Finally, FHCOL is compiled into LLVM IR language. A compiler from FHCOL to
LLVM IR was implemented using Template Coq. To prove semantic equivalence
of FHCOL programs and their IR translations, we rely on the VELLVM project,
which provides formal semantics of IR. The proof involves interaction trees [15],
and detailed discussion of it is beyond the scope of this paper.

5.3 Implementation Details and Related Work

There are also many smaller but useful language design and proof techniques
not covered in this paper due to space constraints. Presently HELIX consists of
43,393 lines of Coq code. Examples of such techniques include proof automation,
monadic error handling, meta-programming translation techniques, dealing with
imperative programs with “holes” in the presence of de Bruijn indices (using
resolvers), among others. Interested readers are encouraged to see the HELIX
source code at https://github.com/vzaliva/helix.

There are several projects for certified compilation from functional to im-
perative languages. CertiCoq translates Gallina programs to CompCert’s Clight.
The goal is much more ambitious than ours, as the aim is to translate not a do-
main specific language like Σ-HCOL but a dependently typed general purpose
language. Interestingly, all three guiding principles cited in [1] also apply to our
approach. Some of their transformation steps could be related to ours. For ex-
ample, going from dependently typed Σ-HCOL to MHCOL, we perform nominal
type erasure. However, there are some differences at later stages. For example,
unlike HELIX, they use a continuation-passing style representation. They prove
compiler correctness, while we rely on automated translation validation.

Another related project is CakeML, which also targets a subset of a general-
purpose language (Standard ML). Unlike HELIX, CakeML uses higher-order

https://github.com/vzaliva/helix
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logic (HOL) to specify functional big-step semantics [12]. There are similarities
with our approach, as we also use a definitional interpreter [14] written in Gal-
lina, to define the semantics of the higher-order language, FHCOL. The main
differences are: small-step versus big-step semantics and translation validation
versus certified compilation. Additionally our programs can not diverge, and
while we technically use fuel to simplify termination checking, it is different
from the clock usage in CakeML.

6 Conclusions and Future Work

Our successful completion of this penultimate verification step in the HELIX
translation chain brings us one step closer to our final goal of completing HELIX,
a formally verified end-to-end high performance code synthesis system based on
SPIRAL.

The main contribution of this work is demonstration of an approach to veri-
fied translation from mixed-embedded purely functional operator language (Σ-
HCOL) to deep-embedded imperative language (DHCOL) via an intermediate
language (MHCOL). We have gradually introduced and proven: error handling,
a memory model, and evaluation contexts. Our proof approach constrains each
language program by a set of properties (structural correctness for Σ-HCOL,
memory safety for MHCOL, and purity for DHCOL), using them to prove each
translation step. Such properties carry some useful information from step to step
in a generic but usable form. For example, when we introduce error handing in
MHCOL, we prove a property under which no errors would occur in MHCOL
programs translated from structurally correct Σ-HCOL. Similarly, in DHCOL,
a program can modify arbitrary memory blocks, but we recognize a subset of
DHCOL programs representing pure functions which have no side effects beyond
modifying a single output memory block.

Future work will include the two main directions: First, completing the proof
of translation chain by proving the last step of LLVM IR code generation. We
made significant progress in this direction jointly with the Vellvm team and
expect to finish and publish the results shortly. The second direction is related
to floating-point related proofs using one of the strategies outlined in Section 5.1.
We feel that we did most of preparatory work defining all languages and proof
frameworks required to successfully complete this step. It must be noted that
the remaining part of the work belongs mostly to the field of numerical analysis
rather than formal methods and programming languages.
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