
Monte Carlo Simulation Based Probabilistic Load Flow

• “Gold standard”/accuracy reference for analytical methods

• Robust, generally-applicable, convergence in theory

• Heavy computational burden, impractical for online application?

• Well fitted problem on modern computing platform

Algorithm Level Optimization:

• Base: Fast Decoupled Load Flow

• Sparse LU decomposition- Approximated Minimal Degree

Computer Architecture Level Optimization:

• Data structure optimization:

• Unrolling sparse computing kernels by code generation

• Nonzeros’ pattern

• Pre-generated

• More non-branch inst.

• Superscalar processor

• Multiple level parallelizaion for real time MCS

Power System Probabilistic Analysis:

• Challenges: new players on the grid

• Undispatchable, large variances, great impact on grid

• Uncertainties & variations.

• New requirements

• NERC: probabilistic analysis from distribution & transmission

• Online computation tool for the smart grid probabilistic analysis

Modern Computer Architecture – Challenge for High Performance

• HW: Moore’s law; SW: very hard to achieve high performance

• Power system applications: algorithm & math library

Performance Result: High Performance Computing Engine

• ~50x speedup on Core i7 thanks to architecture level optimizations

• Performance increases with HW parallel capabilities

Monte Carlo Results and Power Flow Throughput Performance

• Left: How many load flow can be solved every second

• Right: Example phase angle results on IEEE118 system

• (a)Normal(0,10)MW and (b)Uniform(-10,10)MW random active
power on first three highest loading buses (Bus 59, 90, 116)

Motivation and Background

A Software Performance Engineering Approach to

Fast Transmission Probabilistic Load Flow Analysis
Tao Cui and Franz Franchetti

Email: tcui@ece.cmu.edu

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA

Programming Model & Performance Tuning Implementation & Demonstration

Conclusions
Code optimization / parallelization on commodity CPUs

• Fully taking advantages of commodity computing system

Performance scalable with the hardware parallel capacity:

• Tracking new development in CPU micro-architecture.

A real time Monte Carlo solver for probabilistic load flow

• A novel, robust, generally applicable & fast solver for smart grids
challenges & requirements by software performance engineering

• This work is supported by NSF through awards 0931978 and 0702386.

Acknowledgement

 Memory hierarchy

 Multilevel parallelism: Data level (SIMD), instruction level, multithread

1 2 4 4 5 1 1 3

6 3 5 7 6 3 5 7

5 1 1 31 2 4 4

“+”: vaddps on 256FP ADD

[hwloc]

[Intel_opt]

Source: Intel.com

1 5

6

“+”: add

Source: LBNL-3884e Source:
ORNL/TM2004/291

Source: Pantos 2011

Can we fully utilize the modern commodity computing systems,
build a fast, robust, & generally applicable solver for smart grid
real time probabilistic analysis

160x

Load Flow Solver

Load Flow Solver

Load Flow Solver

… 2~64 parallel

threads ...

0

0.5

1

0

0.5

1

0

0.5

1

Generate Random Samples

Solve Load Flows Estimate Density

-10 -5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Effect of Control System

13 cases: 14, 30, 39, 57, 118, 300, 2383, 2736,

2737, 2746, 2746, 3012, 3120
IEEE 118 system

c1

value:

row idx

col ptr c2 c3

r1 r2 r3

v1 v2 v3

r4 r5 r6

v4 v5 v6

c1

mixed:

col ptr c2 c3

r1 r2 r3v1 v2 v3 r4 r5 r6v4 v5 v6

Original CCS:

Mixed CCS:

Original θ array: θ1 θ2 θN

Mixed θ array: θ2θ1 θNsinθ1 cosθ1 sinθ2 cosθ2 sinθN cosθN

...

...

New CCS format for memory access Reduce trigonometric operations

RNG & Load Flow in Buf AN

RNG & Load Flow in Buf A2

RNG & Load Flow in Buf A1

Real Time Interval

(SCADA Interval)

Scheduling Thd 0

Computing Thd 2

Computing Thd 1

Computing Thd N

Sync Signal

KDE in all Buf Bs Result Out

RNG & Load Flow in Buf BN

RNG & Load Flow in Buf B2

RNG & Load Flow in Buf B1

Sync

Signal Out

Switch Buffer A,B

KDE in all Buf As Result Out

RNG: Random Number Generator

KDE: Kernel Density Estimation

Sample FDPF Load Flow Result

SIMD Instructions

Vector Register:

 4 floats in SSE

for (col = 0; col < n; col++){
for (row = col_ptr[col]; row < col_ptr[col+1]; row++){

...// access & compute on nonzero at (col, row)
}

}

do{
switch (case_pattern for 2 consecutive columns){

case ...
case pattern(4,3): {

...// access & compute on nonzero at (i, 1)

...// access & compute on nonzero at (i, 2)

...// access & compute on nonzero at (i, 3)

...// access & compute on nonzero at (i, 4)

...// access & compute on nonzero at (i+1, 1)

...// access & compute on nonzero at (i+1, 2)

...// access & compute on nonzero at (i+1, 3)
break;}

case ...
}

}while(!all columns visited)

Unrolling

0

5

10

15

20

25

Core i3 U330 1.2GHz
(2-Core, SSE)

Core i7 2670QM 2.2GHz
(4-Core, AVX)

Xeon X7560 2.27GHz
(8-Core, SSE)

Optimized Scalar SIMD (SSE or AVX) SIMD + Multicore (2 to 8 cores)

Speed:

Gflop/s

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Speed:

Gflop/s

Baseline1 Optimized Scalar

SSE Improved AVX Improved

SSE 4-core Improved AVX 4-core Improved

Bus Number

(a) Phase angle of Bus 59. Normal distribution P Injections

(b) Phase angle of Bus 59. Uniform distribution P Injections

