REALTIME 3D RECONSTRUCTION OF REALWORLD SCENES

Yu Wang, Hyun Soo Park, Peter Milder, James C. Hoe, Yaser Sheikh (CMU); Eriko Nurvitadhi, Mei Chen (Intel)

(1) OVERVIEW

Problem: Perceptually responsive systems require realtime 3D knowledge of environment

Example: to track user movements in a space, and the nearby objects in that space that user can interact with

Project goal: produce a low energy, memory-bandwidth efficient embedded solution for realtime 3D reconstruction of dynamic environments from monocular video

(2) CAMERA POSE ESTIMATION

Given a video stream from a camera, and a 3D point cloud corpus of the area, estimate camera pose w.r.t the corpus

Performance of software (SW) implementation

Note: we use *SIFT* feature, and our SW uses *fast approximate* method for matching. The accuracy of this method may become *unacceptable* with larger corpus sizes. *Exact* matching is preferred, but very slow to do in SW (for our experiments, ~10x slower than approximate)

SW is too slow even on an aggressive OoO proc (1+ sec/frame), and much worse on an embedded proc

As corpus size increases with larger and/or more complex scenes, feature matching becomes the bottleneck

Collaborative Perception Real-time Knowledge Discovery Robotics Embedded Systems

(3) FEATURE MATCHING ACCELERATOR

Feature matching: for each feature in each incoming image, find 2 nearest neighbor (L2-norm) in 3D point cloud corpus

We offload the feature matching bottleneck onto HW

- custom HW architecture to do exact matching
- orders of magnitude more efficient than SW implementation

(4) FPGA PROOF-OF-CONCEPT

Feature matching on Altera DE4 board (Stratix IV GX FPGA)

- utilizes 10 parallel stations, runs at 150 MHz clock freq
- occupies ~200K (50%) FPGA logic & 1MB (47%) on-chip mem
- 15 ms & 32 ms per VGA frame (14K & 22K corpus)

24x & 144x faster over SW on OoO proc (14K & 22K corpus)

32x & 257x faster over SW on embedded proc (14K & 22K corpus)

Realtime speed (31+ fps)

What's next

- Accelerate feature extraction
- 3D point cloud corpus reconstruction in realtime

