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 Objective: 
The test bed has been built to explore various possibilities for the future 
smart grid in order to 

 improve system reliability, 

 enhance system capacity to host renewable energy, and 

 allow interactions between energy providers and consumers. 

 

 The smart energy campus  
is a living smart grid test-bed of Georgia Tech, which 

 Covers 200 buildings and 

 Has more than 400 smart meters, 

 3 years of AMI data (15 minutes resolution), 

 State-of-the-art IT system for data collection and management 

Smart Energy Campus 



Outline 
 Data Management 

 AMI data management 

 GIS data integration 

 Robust distribution system state estimation 

 Advanced Load Modeling 
 Roof-top solar systems 

 Electric vehicles 

 Time-variant load modeling 

 Long Term Planning 
 Campus renovation and expansion 

 Shuttle electrification 

 Energy Storage 

 Visualization 

 Demand Response & Real-time Pricing 



AMI Data Management 

 Smart meters 

 Installed in more than 200 
buildings  

 400 main meters and sub-meters 

 Real-time data acquisition 

 Historical database 

 ION database (facility) 

 SQLite database (research) 

 Data Access 

 API request (upon authorization) 

 Web-based dashboard through 
desktop or smart phone 

 Interactive visualization (Java-
based) 

  

ION Webreach Main Menu Building Menu 

Building Meter Measurements Interactive Tools 



Robust Distribution System State Estimation 



Advanced Load Modeling 

 Roof-top Solar Systems 

 Electrical Vehicle Charging Load 

 Time-variant Load Model 



Load Modeling: Solar Photovoltaic 

 Three roof-top PV systems: 

 Campus Recreation Center (CRC) 

 Carbon Neutral Energy Solutions Laboratory (CNES) 

 Clough Undergraduate Learning Commons (Clough) 

 CRC PV array was installed in 1996, which was one 
of the largest roof-mounted PV system. 

 Continuous monitoring cumulate valuable data. 

Clough CNES CRC 

ION Webreach Interface 



Load Modeling: Electric Vehicles 

 Steady growth of EV charging demand: 

 As of Feb. 2014, there were 155 EVs on campus. 

 EV type: Leaf 90%, Tesla, BMW i3… 

 Charging Infrastructure 

 Three Level I charging stations 

 Six Level II charging stations 

 A statistic model for EV charging demand has been 
developed 

student 
32% 

faculty 
42% 

staff 
26% 

  

Level I Charger Level II Charger Parking Map 



Load Modeling: Electric Vehicle 

Objective:  
we seek to model the PHEV charging 
behavior through a 𝑀𝑡/𝐺/∞/𝑁𝑚𝑎𝑥 
queue with finite calling population 

 

• 𝑀𝑡 means the periodic non-
homogeneous arrival rate is a function 
of time 𝑡;  

• 𝐺 stands for the empirical distribution 
of PHEV charging duration;  

• ∞ means the charging system is a self-
serve system with no waiting time;  

• 𝑁𝑚𝑎𝑥 is the total number of PHEVs, 
which is known. 
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Load Modeling: Electric Vehicle 
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The Probility of n PHEVs charging at time t
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According to the central limit theorem, we could construct the confidence 

interval for the long run average mean values, which follows the t distribution. 

Conclusion: The actual charging intensity coefficient is around 0.25. 



Load Modeling: Time-variant Model 

• The vast deployment of smart meters 
producing massive amount of data and 
information yet unexplored 

• Current load modeling methods 
• Component-based approach 

• Measurement-based approach 

• Hence, we propose a time-variant load 
model based on smart meter historical data 

• Load Model Definition 

( ) ( ) P P V Q Q V



Load Modeling: Time-variant Model 

• The Load Condition Assumption 

• Data Mining Technologies 

KL divergenceData Filtering K-subspace Method Cluster Evaluation

It is possible to create a load model 

through data-mining processes. 



Long-term Planning 

 Campus Renovation and Expansion 

 Shuttle Electrification 

 Energy Storage 



Future Campus Renovation & Expansion 

Objective:  
Optimize the distribution system in order to meet the campus future needs. 

 

Solution:  
 Estimate campus future needs  

 Natural load growth 

 New buildings and expansions 

 Location of new loads 

 Simulate the future scenarios through integrated simulation environment 

 Pin the new loads through google earth. 

 Incorporate new system components to the OpenDSS model, such as new 
transformers, secondary lines. 

 Serving new load with new feeders or existing feeders. 

 Check system reliability. 

 



Project Location Map

Project Completion 
Time Line

Future Campus Renovation & Expansion 



Shuttle Electrification 

Objective:  
Upgrading the current diesel shuttles 
with electric buses, while maintaining 
current services. 

 

Solution:  

 Replacing 23 existing buses with 
23 electric buses ($900K/unit) 

 Charging Infrastructure: 
 2 fast chargers ($600K/unit) 

 10 stop chargers ($70K/unit) 

 Lithium titanate battery (6 years) 



Shuttle Electrification 
Breakdown of total NPV cost 
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Energy Storage 

Objective:  
Estimate the feasibility of introducing energy 
storage systems on campus. 

Solution:  
 NaS Battery (Sodium-Sulfur Battery) 

 Battery life (up to 13 years) 

 Efficiency: 78% (including PCS efficiency 95%) 

 Fixed costs 

 Battery  long-term cost ($250/kWh) 

 Power Conversion System ($150~$260/kW) 

 Balance of Plant ($100/kW) 

 Operation and Management Costs 

 Fixed O&M cost ($0.46/kW-year) 

 Variable O&M costs: ($0.7cents/kWh) 



Energy Storage 

Energy Storage Control Optimization:  
 

 

Objective:  
 Minimize total cost:  

 Fixed cost along the battery life 

 O&M cost 

 Charging Cost 

 Discharging revenue 

 Constraints: 

 DOD or Battery capacity 

 Efficiency 

 Peak charging/discharging rate 
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Visualization 

 Enhance situational awareness 

 Expose consumer behaviors 

 Encourage building-to-grid interactions 



Situational Awareness 

Test Bed Distribution System Over View 



Situational Awareness 

Bird’s-eye View of the Campus Energy Consumption 



Situational Awareness 

Building Energy Consumption Intensity Log 



Real Time Pricing 
 The test bed campus is served under “Real Time Pricing – Hour Ahead 

Schedule” (PTR-HA) tariff provided by Georgia Power. 

𝑇𝑜𝑡𝑎𝑙. 𝐵𝑖𝑙𝑙 = 𝑆𝑡𝑑. 𝐵𝑖𝑙𝑙 + 𝑅𝑇𝑃. 𝐵𝑖𝑙𝑙 

where 𝑅𝑇𝑃. 𝐵𝑖𝑙𝑙 =  𝑅𝑇𝑃. 𝑃𝑟𝑖𝑐𝑒 × (𝐿𝑜𝑎𝑑 − 𝐶𝐵𝐿)ℎ𝑟  

 Customer baseline load (CBL) is developed for the test bed according to the 
energy consumption of the test bed from the previous calendar year.  

 



Demand Response Applications 

 Demand Response Inputs 

 Real-time energy 
consumption 

 HAVC system setting 

 Chiller plant condition 

 Real-time price signals 

 Demand Response Outputs 

 Update HAVC setting 

 Chiller plant control 

 

 Metasys Software is used to integrate and control chillers based on price 
signals 



Thank you ! 


