From Models and Data to Proofs

For Improving Cyberphysical Systems

Sayan Mitra

mitras@Illinois.edu

Department of Electrical & Computer Engineering
University of Illinois at Urbana Champaign

TENTH CARNEGIE MELLON CONFERENCE ON THE ELECTRICITY INDUSTRY
Testbeds for Smart Grids and Smart Cities, March 31st 2015

Collaborators

Given a system model and some requirements, <u>find</u> a behavior of the system that violates those requirements.

Yes (Bug-trace)

There is no such behavior (Safety certificate)

Model + Trace Data → Proof

Outline

- Overview of Trace-based Verification
- Three recent case studies on
 - Alerting protocol (NASA/FAA)
 - Powertrain control system (Toyota)
 - Cardiac cells and Pacemaker Network
- Conclusions

Our Tools Handle a Class of Simulink/Stateflow Models

A generic hybrid systems with two modes

Early 90's: Exact unbounded verification: Decidable for $\dot{x}=1$ [Alur Dill 92] Undecidable even for $\dot{x}=1$ $\dot{y}=2$ [Henzinger 95]

Late 90'-00': Approximate, bounded, mostly linear: Hamilton-Jacobi-Bellman [Tomlin et al. 02], Polytopes [Henzinger 97], ellipsoids [Kurzhanski] zonotopes [Girard 05], support functions [Frehse 08], CEGAR [Clarke 03]

Today: Scalable, nonlinear: trace-based methods [Mitra 10-13][Donze 07]

Core Idea: Trace-based Verification

Given start S and target TCompute finite cover of initial set

Execute/simulate from the center x_0 of each cover

Bloat execution to contain all trajectories from the cover

If contained in T then UNSAFE

Union is an over-approximation of reach set

If Union is disjoint from T then SAFE

Otherwise, refine cover

- How much to bloat? Use static analysis of model [EmSoft2013, FM 2014].
- How to handle mode switches? May-must analysis [TACAS 2015]
- How to handle large models? Compositional analysis [HSCC 2014, CAV 2014]

Discrepancy: a Layer Between Algorithms for (Verification | Synthesis | Monitoring) and (Models | Testbeds | Simulators)

A model characteristic extracted using static analysis: Discrepancy

Definition. $\beta: \mathbb{R}^{2n} \times \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ defines a discrepancy of the system if for any two states x_1 and $x_2 \in X$, For any t,

- 1. $|\xi(x_1,t) \xi(x_2,t)| \le \beta(x_1,x_2,t)$ and
- 2. $\beta \rightarrow 0$ as $x_1 \rightarrow x_2$

Algorithms are Sound & Relatively Complete

Theorem. (Soundness). If Algorithm returns safe or unsafe, then A is safe or unsafe.

Definition Given any HA $A = \langle V, Loc, A, D, T \rangle$, an ϵ -perturbation of A is a new HA A' that is identical except, $\Theta' = B_{\epsilon}(\Theta)$, $\forall \ \ell \in Loc, Inv' = B_{\epsilon}(Inv)$ (b) $a \in A$, $Guard_a = B_{\epsilon}(Guard_a)$.

A is **robustly safe** iff $\exists \epsilon > 0$, such that A' is safe for U_{ϵ} upto time bound T, and transition bound N. Robustly unsafe iff $\exists \epsilon < 0$ such that A' is safe for U_{ϵ} .

Theorem. (Relative Completeness) Algorithm always terminates whenever the A is either robustly safe or robustly unsafe.

Outline

- Overview of Trace-based Verification
- Three recent case studies on
 - Alerting protocol (NASA/FAA)
 - Powertrain control system (Toyota)
 - Cardiac cells and Pacemaker Network
- Conclusions

SAPA-ALAS Parallel Landing Protocol

Air traffic is going to double in the next 20-25 years

Strong need to improve airport throughput

Cost of new runways: ~ \$USD 15B+

SAPA-ALAS Parallel Landing Protocol

Air traffic is going to double in the next 20-25 years

Strong need to improve airport throughput

Cost of new runways: ~ \$USD 15B+

Alternatively, pack more planes in shorter space & time

There are physical limits, e.g., wake vortices

But there is also human (co-pilot) in the loop

Solution: software!

SAPA-ALAS Parallel Landing Protocol

Ownship and Intruder approaching parallel runways with small separation

ALAS (at ownship) NASA's protocol supposed to raise an alarm if within T time units the *Intruder* can violate safe separation

Can we trust ALAS? $Alert \prec_b Unsafe$?

Uncertainty: $xsep \in [.11, .12] \text{ Nm } ysep \in [.1, .21] \text{ Nm, } \phi \in [30^{\circ}, 45^{\circ}] \text{ vy}_{o} = 136 \text{ Nmph, vy}_{i} = 155 \text{ Nmph}$

C2E2 Verifies Alerting Protocol in Minutes

Our verification tool computes increasingly more precise overapproximations of the reachable states of the system and automatically proves Alert < Unsafe properties for different scenarios in reasonable time

Shows that false alarms are possible

Finds scenarios where alarm may be missed

		The state of the s	The said of the
Scenario	Alert ≼ ₄ Unsafe	Running time (mins:sec)	Alert ≼ _? Unsafe
6	False	3:27	2.16
7	True	1:13	
8	True	2:21	3
6.1	False	7:18	1.54
7.1	True	2:34	
8.1	True	4:55	#-
9	False	2:18	1.8
10	False	3:04	2.4
9.1	False	4:30	1.8
10.1	False	6:11	2.4

2. Powertrain Control System

Simulink model of a powertrain control system provided by Toyota as a verification challenge. Highly nonlinear polynomial differential equations; discrete mode switches

startup $\dot{x} = f_s(x)$ $timer = T_s$ normal $\dot{x} = f_n(x)$ $\theta_{in} \ge 70^o$ sensor_fail \dot{x} $= f_{sf}(x)$ power $\dot{x} = f_p(x)$

First to verify properties, e.g., that the airfuel ratio remains within a given range for a set of driver behaviors

Discrepancy function β computed automatically using the local algorithm

2. Powertrain Control System

Simulink model of a powertrain control system provided by Toyota as a verification challenge. Highly nonlinear polynomial differential equations; discrete mode switches

We converted the model to Stateflow that can be processed by our tool; rest of the analysis was completely automatic. The whole exercise took less than a month

3. Pacemaker + Cardiac Network

Simulink model of a **network of cardiac cells** and a pacemaker; nonlinear differential equations; **30+ continuous variables**; many interacting components; uncertainty in timing and initial voltages

Key property: voltage range action potentials remain in specific interval and has periodicity

3. Pacemaker + Cardiac Network

Our tool first to verify properties of this model (running times shown below)

Compositional or modular analysis for computing the discrepancy

Variables	Thresh	Sims	Run time (s)	Property
15	2	16	104.8	TRUE
15	1.65	16	103.8	TRUE
25	2	3	208	TRUE
25	1.65	5	281.6	TRUE
25	1.5	NA	63.4	FALSE
40	2	3	240.1	TRUE
40	1.65	73	2376.5	TRUE

Conclusion

We have developed new algorithms and tools for analyzing complex, nonlinear hybrid models of control systems and software;

- Use Traces + Discrepancy → algorithms
- Sound (guarantees coverage): Gives proof of correctness or finds a bug
- Relatively complete: Always gives an answer¹
- Effective: Appears to work for large & interesting examples²

Can this technology be used in design of Smart Grids

- Generating tests
- Finding parameters that satisfy properties
- Online monitoring
- Designing controllers

1: Unless the system is fragile with respect to the property in question

2: Exploiting parallelism will make it scale to even larger models

Input-to-State (IS) Discrepancy

Definition. IS discrepancy is defined by β and γ such that for any initial states x, x' and any inputs u, u',

$$|\xi(x, u, t) - \xi(x', u', t)| \le \beta(x, x', t) + \int_0^t \gamma(|u(s) - u'(s)|) ds$$

$$\beta \to 0 \text{ as } x \to x', \text{ and } \gamma \to 0 \text{ as } u \to u'$$

Bloating with Reduced Model

The bloated tube contains all trajectories start from the δ -ball of x.

The over-approximation can be computed arbitrarily precise.

3. Pacemaker + Cardiac Network

Our tool first to verify properties of this model (running times shown below)

Compositional or modular analysis for computing the discrepancy

Variables	Thresh	Sims	Run time (s)	Property
15	2	16	104.8	TRUE
15	1.65	16	103.8	TRUE
25	2	3	208	TRUE
25	1.65	5	281.6	TRUE
25	1.5	NA	63.4	FALSE
40	2	3	240.1	TRUE
40	1.65	73	2376.5	TRUE