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¢ | August 2003. Thousands of New Yorkers
& | crossing the Brooklyn Bridge as the NE
| | experienced the biggest power outage.
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Blackout's primary cause was a software bug | & F 7= 0%
in the alarm system at a control room of the |
] . . . gl T
FirstEnergy Corporation, in Ohio. / NS e
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"Program testing can best show the presence of errors but
never their absence.” Edsger W. Dijkstra
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Verification as a Search Problem)

/ Model,

adversary,

rEQUIrEMENtS iy AIgO rlth m

@ Certificate

Given a system model and some requirements, find a
behavior of the system that violates those requirements.

Bug trace

Yes (Bug-trace)
There is no such behavior (Safety certificate)




Outline

e Qverview of Trace-based Verification

* Three recent case studies on

— Alerting protocol (NASA/FAA)
— Powertrain control system (Toyota)
— Cardiac cells and Pacemaker Network

* Conclusions



Our Tools Handle a Class of Simulink/Stateflow Models

Plant
dynamics

G12(x)
R12(x,x")

Controller
Hardware
software

A generic hybrid systems
with two modes

Early 90’s: Exact unbounded verification: Decidable for x = 1
Undecidable even for x=1 y=2

Late 90°-00’: Approximate, bounded, mostly linear: Hamilton-Jacobi-Bellman
Polytopes , ellipsoids zonotopes
support functions CEGAR

Today: Scalable, nonlinear: trace-based methods



( Core Idea: Trace-based Verification )

Given start €S " andtarget [

Compute finite cover of initial set

Execute/simulate from the center x, of each cover
execution to contain all trajectories from the cover

If contained in T then UNSAFE

Union is an over-approximation of reach set

If Union is disjoint from T then SAFE

Otherwise, refine cover

* How much to bloat? Use static analysis of model
* How to handle mode switches? May-must analysis
* How to handle large models? Compositional analysis



N , A
Discrepancy: a Layer Between Algorithms for

(Verification | Synthesis | Monitoring) and
(Models| Testbeds | Simulators)

verification o synthesis o

math model o code o hardware



G model characteristic extracted using static analysis: Discrepancy)

G:R?" x R0 - R=? defines a of the
system if for any two states x; and x, € X, For any t,

L [§(xq1,t) — E(xp, t)| < B(xq,x5,t) and
2. B— Dasxi— X




( Algorithms are Sound & Relatively Complete )

Theorem. (Soundness). If Algorithm returns safe or unsafe, then A is safe or
unsafe.

Definition Givenany HAA = (V,Loc,A,D, T ), an e-perturbation of Ais a
new HA A’ that is identical except, @' = B.(0), V £ € Loc, Inv' = B.(Inv)
~(b)a €A, Guard, = B.(Guard,).

A is robustly safe iff 3e > 0, such that A’ is safe for U, upto time bound T, and
transition bound N. Robustly unsafe iff 3 € < 0 such that A’ is safe for U..

Theorem. (Relative Completeness) Algorithm always terminates whenever
the A is either robustly safe or robustly unsafe.
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Outline

« Overview of Trace-based Verification

* Three recent case studies on
— Alerting protocol (NASA/FAA)

— Powertrain control system (Toyota)

— Cardiac cells and Pacemaker Network

* Conclusions
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SAPA-ALAS Parallel Landing Protocol

Air traffic is going to double in the next 20-25 years
Strong need to improve airport throughput

Cost of new runways: ~ SUSD 15B+

Duggirala, Wang, Mitra, Munoz, Viswanathan FM 2014
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SAPA-ALAS Parallel Landing Protocol

Air traffic is going to double in the next 20-25 years

Strong need to improve airport throughput

Cost of new runways: ~ SUSD 15B+

Alternatively, pack more planes in shorter space & time
There are physical limits, e.g., wake vortices

But there is also human (co-pilot) in the loop

Solution: software!

Duggirala, Wang, Mitra, Munoz, Viswanathan FM 2014
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SAPA-ALAS Parallel Landing Protocol

Ownship and Intruder approaching parallel runways
with small separation

ALAS (at ownship) NASA’s protocol supposed to raise

an alarm if within T time units the Intruder can violate
safe separation

Can we trust ALAS? Alert <, Unsafe ?

Uncertainty: xsep € [.11,.12] Nm ysep € [.1,.21]
Nm, ¢ € [30°,45°] vy,= 136 Nmph, vy, = 155 Nmph

Duggirala, Wang, Mitra, Munoz, Viswanathan FM 2014
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2. Powertrain Control System
Simulink model of a powertrain control —
system provided by Toyota as a verification
challenge. Highly nonlinear polynomial timer =T,

differential equations; discrete mode
X=TnX 6;, = 70°
=
x = fp(x)

switches

sensor_fail
Zfs (x)
First to verify properties, e.g., that the air- :

fuel ratio remains within a given range for
a set of driver behaviors

Discrepancy function f computed
automatically using the local algorithm



2. Powertrain Control System

Simulink. model of a powertrain control system provided by Toyota as
a verification challenge. Highly nonlinear polynomial differential
equations; discrete mode switches

We converted the model to Stateflow that can be processed by our
tool; rest of the analysis was completely automatic. The whole
exercise took less than a month

Behavior of Air-Fuel ratio
16

air-fuel ratio

pow
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( 3. Pacemaker + Cardiac Network)

Simulink model of a network of cardiac cells and a pacemaker;
nonlinear differential equations; 30+ continuous variables; many
interacting components; uncertainty in timing and initial voltages

Key propéerty: voltage range action potentials remain in specific
interval and has periodicity




( 3. Pacemaker + Cardiac Network)

Our tool first to verify properties of this model

(running times shown below)

Compositional or modular analysis for

computing the discrepancy

Variables| Thresh Sims Run time (s) Property

15 p 16 104.8 TRUE

15 1.65 16 103.8 TRUE

‘ ‘ 25 p 3 208 TRUE

Y / / ™Y 25 1.65 ) 281.6 TRUE
25 15 NA 63.4 FALSE

40 p 3 240.1 TRUE

40 1.65 73 2376.5 TRUE




( Conclusion )

We have developed new algorithms and tools for analyzing complex,
nonlinear hybrid models of control systems and software;

* Use Traces + Discrepancy = algorithms
e Sound (guarantees coverage):

* Relatively complete:

* Effective:

Can this technology be used in design of Smart Grids
* Generating tests

* Finding parameters that satisfy properties
 Online monitoring

* Designing controllers






Input-to-State (IS) Discrepancy
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Definition. IS discrepancy is defined by 5 and y such that for
any initial states x, x" and any inputs u, u’,

t
E ()P e e j Fule) e
O .

f—>0asx—>x",andy > 0asu > u’
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Bloating with Reduced Model

n X N dimensional n X 1 dimensional

ml ~ Bl (5; t)
+y1 (M, m3)

m3 o 133 (67 t)
+y3(my,m;)

[[ Xy = f2(x2,Uy) ]

m(t)  §(t) v

X
W <: m(t)
‘ time
Eme >

The bloated tube contains all trajectories start from the §-ball of x.

The over-approximation can be computed arbitrarily precise.
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( 3. Pacemaker + Cardiac Network)

Our tool first to verify properties of this model

(running times shown below)

Compositional or modular analysis for

computing the discrepancy

Variables| Thresh Sims Run time (s) Property

15 p 16 104.8 TRUE

15 1.65 16 103.8 TRUE

‘ ‘ 25 p 3 208 TRUE

Y / / ™Y 25 1.65 ) 281.6 TRUE
25 15 NA 63.4 FALSE

40 p 3 240.1 TRUE

40 1.65 73 2376.5 TRUE




