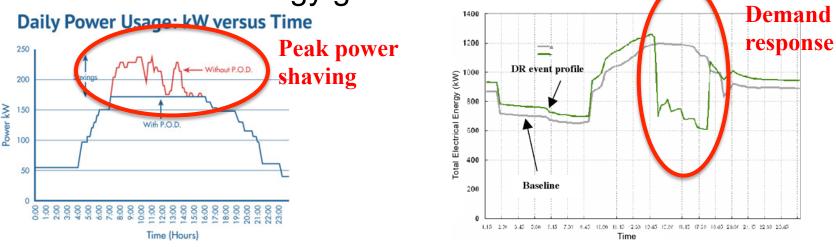
Distributed Control of a Swarm of Buildings Connected to a Smart Grid

Baris Aksanli University of California, San Diego

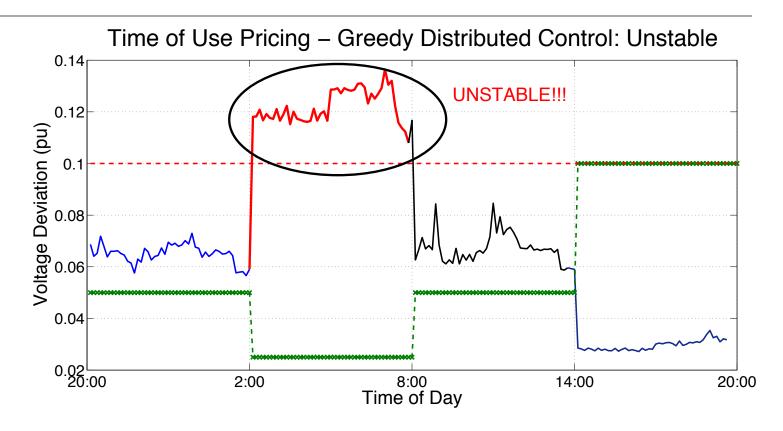
April 1, 2015


O see

System Energy Efficiency Lab seelab.ucsd.edu

Building Energy Control

- Building energy management in smart grid has become an important research area
- Individual scenarios might include:
 - Demand response
 - Peak power management
 - Demand shifting based on time-of-use pricing and/or renewable energy generation

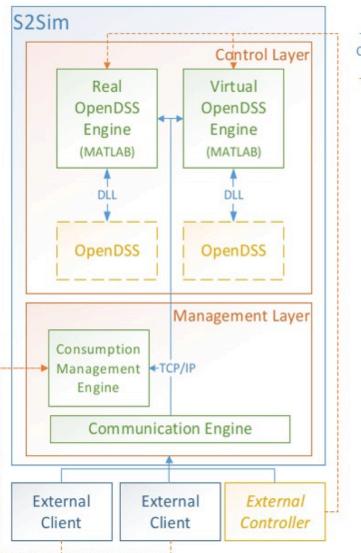


Distributed Building Control

- Each controller focuses on a single building
- These individual "optimal" controllers create a greedy distributed system.
- This can generate:
 - New peak spikes at non-peak hours
 - Supply-demand imbalances
 - Voltage/frequency instability

o see

Distributed Control Issues


- We need to monitor the system in a holistic way
- Observe and eliminate the discrepancies

Smart Grid Swarm Simulator (S²Sim) See

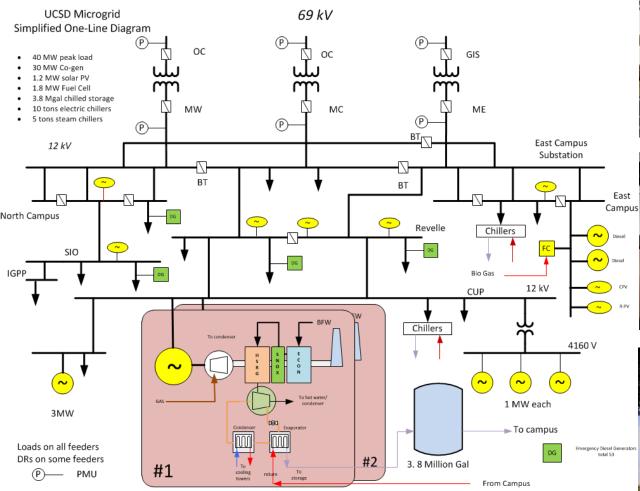
- OpenDSS based grid simulator
- Simulates grid dynamics: power, voltage
- Evaluates and quantifies grid stability
- Enables evaluation of the quality of distributed control of smart buildings
 - Treats each building as a black box
 - Allows co-simulation of individual controllers or data feeds from real-time sensor/actuator systems

o see

S²Sim Design Overview

Communication Link

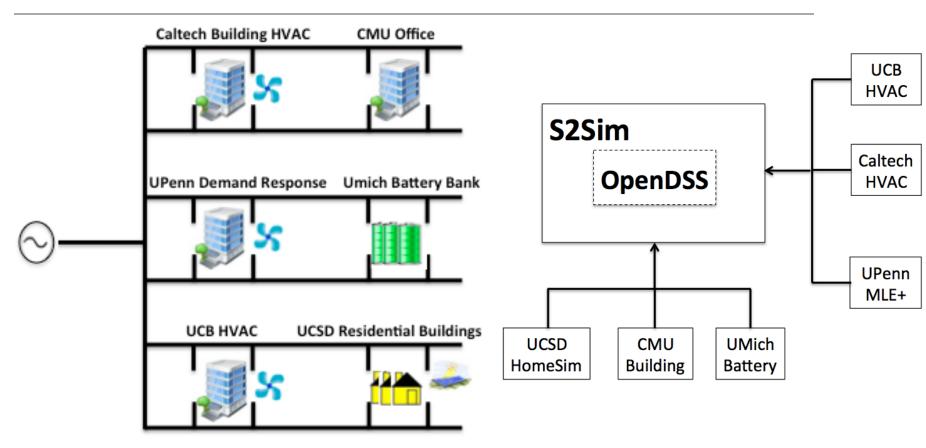
- Communication engine manages external client connections
- OpenDSS engine calculates grid dynamics
- Consumption management engine evaluates power values and sends price feedback


Smart Price Feedback Mechanism S

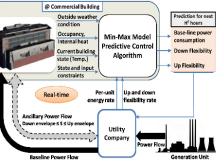
Smart Price Feedback – Greedy Distributed Control: Stable Smart Pricing guides to stability 0.1 Voltage Deviation (pu) 0.04 0.02 8:00 2:00 14:00 20:00 Time fo Day

- S²Sim calculates a price for each client
- Higher deviation \rightarrow Higher price
- Clients reduce their consumption to avoid high prices

Base Model: UCSD Microgrid



Current System



- Current circuit can support up to 12MW, corresponding to a town with approx. 10000 residents
- A joint effort of six universities

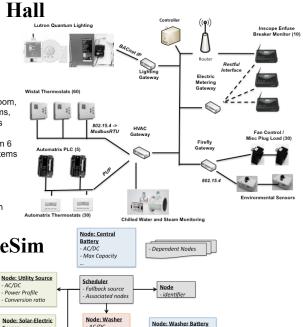
Individual Clients UCSD/UCB/UPenn/CMU/UMich/Caltech @ Commercial Building

UCB HVAC

- Flexibility of commercial buildings HVAC system is a significant regulation resource.
- · Defined and quantified flexibility of building HVAC systems.

- Designed robust model predictive control framework to guarantee:
 - 1. Building climate control
- Grid flexibility requirements
- Implemented contractual framework for costs and benefits to building and grid.

CMU Scaife Hall



40,000 sq ft, 5 story, 140 room, built in 1962 with classrooms. auditorium, offices and labs

- · Sensing and control from 6 building automation systems
- Live data streaming into S²Sim
- · Load shedding based on S²Sim pricing signals

UCSD HomeSim

- Residential energy simulation platform
- Can emulate neighborhoods
- · Replicated and connected to S²Sim

AC/DC

Max Capacity

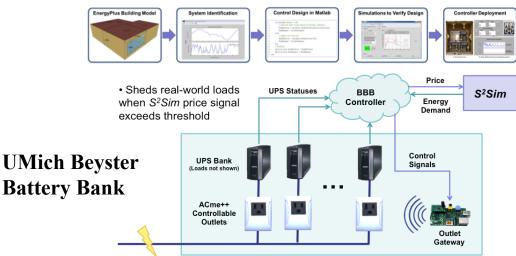
Caltech HVAC

- Resistor-capacitor network to model heat transfer
- MPC to satisfy formal specifications in Signal Temporal Logic

$$\varphi = \Box((\operatorname{occ}_t > 0) \Rightarrow$$

$$(T_t > T_t^{\text{comf}}))$$

Use price signals for Demand response


Matlab Toolbox for Integrated Modeling and Controls for Energy-Efficient Buildings.

Co-simulate with realistic EnergyPlus buildings

UPenn

MLE+

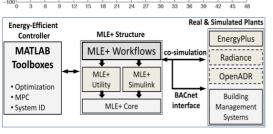
Graphical front-end for workflow from modeling to controller synthesis and deployment

 Pricing feedback from S²Sim based on consumption, affects appliance rescheduling, battery charge/discharge periods, matching solar energy with demand

Source

AC/DC

Power Profile


Conversion ratio

AC/DC

Interval

Power Profile

Temperature 18 21 24 27 33 36 12 15 30 39 30 21

Comfort Limit

42

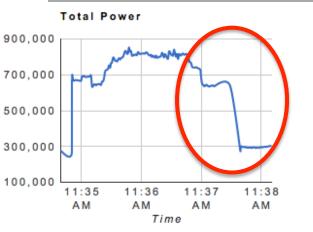
42

Occupancy

45

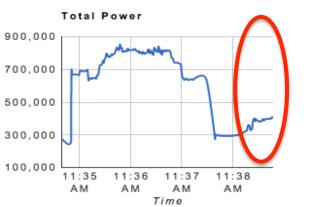
Air Flow

Example Scenario Step 1: Voltage deviation occurs


Client Id	Client Name	Client Description
118	UCB1	UCB-CALTECH HVAC Controller
117	UCSD2	UCSD Medical Facility
115	UMICH1	Battery Bank Controller
119	UCB2	UCB SDH Hall - Office Building Controller
116	UCSD1	UCSD Campus Dormitory
120	UPENN1	MLE+ HVAC Controller

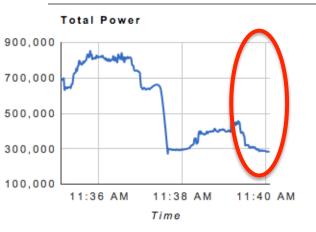
- Six individual *smart* building controller
- Sudden power spikes can increase stability, hence price
- Gradual power spikes result in gradual price increase

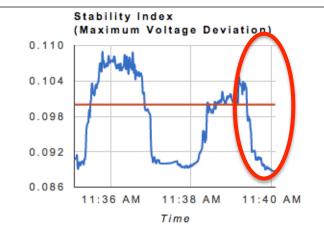
Example Scenario Step 2: Stability is restored



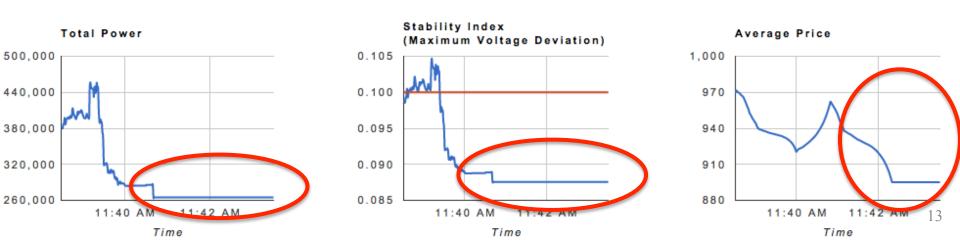


- When consumption decreases, stability is restored
- The price keeps increasing due to high deviation
- After consumption increases again, voltage/price increases





Example Scenario Step 3: Price reduces



- After a while price starts to reduce
- At the end, the price stabilizes

Next Steps

- Consider the system *twofold*:
 - Building controllers: Revise the individual building controllers to account for the grid dynamics
 - Grid: Smart grid control instead of individual greedy distributed control
- Combine these separate parts to create an optimal close-loop feedback system
 - Joint optimization of building savings and grid operation

Summary

- Smart grid energy management is an important topic
 - Residential (house) energy management
 - Building energy management HVAC in office and commercial buildings
 - Uncoordinated individual control mechanisms can endanger the grid stability
- Distributed energy management in a smart grid
 - S²Sim: Simulates grid dynamics; evaluates and quantifies grid stability
 - Created a realistic grid model, corresponding to a small town
 - Monitor and prevent instability events
 - Devised a smart price feedback mechanism