

TENTH CARNEGIE MELLON CONFERENCE ON THE ELECTRICITY INDUSTRY

PRE-CONFERENCE WORKSHOP

Enhanced AGC (E-AGC) for Quality of Response (QoR) Control in Dynamic Electric Power System

Presenter: Xia Miao

© Qixing Liu, Xia Miao, Marija Ilić

Many DERs can participate in frequency stabilization and regulation

AMI: Advanced Metering Infrastructure PHEV: Plug-in Hybrid Electric Vehicle FACTS: Flexible AC Transmission System

The Changing Electric Power System Dynamics

- Changes and challenges brought about by the deployment of new technologies to the control of electric power systems dynamics
 - Change 1: new devices & components generally change the characteristics of a power grid
 - FACTS devices increase maximum power transfer on specific lines of interest by reducing the line impedance; this, in turn, leads to stronger interactions between different power plants
 - Challenge 1: today's primary stabilization controllers (governors, excitation systems) are tuned locally by modeling the external system as a static Thevenin equivalent. Dynamics not captured, instability caused by unmodeled dynamics (i.e. interactions) ignored [1].
 - Change 2: fast-varying persistent disturbances injected by the renewable energy sources
 - Challenge 2: State-of-the-art hierarchical control assumes temporal separation of disturbances into fast continuous and slow quasi-stationary and designs control separately; this assumption no longer holds, therefore, temporal separation of control is no longer justified.

Potential of Making the System "Green" by Using Smarts

- Opportunity: coordination for control of power system dynamics
- Opportunity: better control performance enabled by advanced sensing and communication technologies
- Toward better performance:
 - coordination for control needs to be practically implementable
 - What is the right information for communication ?
- Our point of view: Understand the physical characteristics of large-scale electric power system.

"Green" components "Grey" system...

E-AGC—Example of DyMonDS-based frequnecy control

- Background & Motivation
- Foundation of Enhanced AGC (E-AGC) Approach
 - Structure-Preserving Modeling Method
 - Inter-area Variable (IntV)
- Model-Based Design of the E-AGC Approach
 - Interaction-Based Quality of Response (QoR) Analysis
 - Model-Based E-AGC
- Implementation in SGRS
- Numerical Simulations

Fundamental Concept: Structure-Preserving Modeling

A concept of <u>Intelligent Balancing Authority (iBA)</u> in earlier work [2]

(bottom-up approach)

- Three-Layered iBAs
 - ✓ iBA-C: component layer
 - ✓ iBA-R: region layer
 - ✓ iBA-IR: Inter-region layer
- General modeling framework
 - ✓ iBA-C
 - Local dynamics of the component
 - External interactions with other components
 - ✓ iBA-R
 - All the variables of iBA-Cs combined in each iBA-R
 - ✓ iBA-IR
 - All the variables of iBA-Rs combined in iBA-IR

Fundamental Concept: Structure-Preserving Modeling

- Structural representation of multiple administrative layers in 5 Bus System
 - Structure is preserved
- iBA-C: component layer model

$$\dot{x}_{c,i} = A_{c,i} x_{c,i} + B_{c,i} u_{c,i} + \sum_{i=1}^{N_c^{ir}} A_{c,ij} x_{c,j} + H_{c,i} P_{d,i},$$

$$x_{c,i}(t_0) = x_{ci0},$$

iBA-R: region layer model

$$\dot{x}_{r,k} = A_{r,k} x_{r,k} + B_{r,k} u_{r,k} + \sum_{h=1}^{N_r} A_{r,kh} x_{r,h} + H_{r,k} P_{r,k}^d,$$

 $x_{r,k}(t_0) = 0,$

iBA-IR: Inter-region layer model

$$\dot{x}_{ir} = A_{ir}x_{ir} + B_{ir}u_{ir} + H_{ir}d_{ir}^{L}, \quad x_{ir}(t_0) = 0,$$

A System Representation with Three iBA Layers

Fundamental Concept: Inter-area Variable (IntV)

- The notion of IntV was originally proposed in [3] to capture an effect driven only by inter-area dynamics.
- New Definition [4]:

Given a dynamic component (subsystem), its $IntV\ Z$ is an output variable in terms of the local states of the component (subsystem) and it satisfies:

 $Z \equiv constant$

when the component (subsystem) is free of any conserved net power imbalance

- No steady state assumption
- A time-varying response of Z indicates the existence of a non-zero conserved net power imbalance that may further lead to unacceptable QoR of system dynamics

Interaction-Based Quality of Response Analysis

- Stabilized systems concerned
- To exploit the effects of <u>interactions</u> on frequency QoR
- Problematic QoR fundamentally caused by <u>conserved net power imbalance</u>

- $\qquad \text{Model-based illustration: } \dot{x}_{c,i} = A_{c,i} x_{c,i} + B_{c,i} u_{c,i} F_{c,i}^G P_{G,i}, \quad x_{c,i}(t_0) = x_{ci0},$
- Aggregated interaction with the external system

From Physics to Mathematics

- Mathematical model of the conserved net power imbalance
 - lacksquare Reflected by the rank deficiency of $A_{c,i}$

$$\dot{x}_{c,i} = A_{c,i} x_{c,i} + B_{c,i} u_{c,i} - F_{c,i}^G P_{G,i},$$
$$x_{c,i}(t_0) = x_{ci0},$$

Disturbance on P_G conserved by the zero eigenmode

Conservation of power

- lacksquare In the 4-th order G-T-G model, $\mathrm{rank}(A_{c,i})=3$
- Interaction variable (IntV) [Ilic, 5] applied to represent the dynamics

$$z_{c,i} = T_{c,i}x_{c,i}$$
, where $T_{c,i}A_{c,i} = 0$, $T_{c,i}$ unique (up to a scalar)

$$\dot{z}_{c,i} = -P_{G,i}, \text{ when } u_{c,i} = 0$$
 Net power imbalance in terms of local states

Interaction-Based Quality of Response Analysis

- The notion of IntV used for QoR analysis
 - Component-level

$$\dot{x}_{c,i} = A_{c,i} x_{c,i} + F_{c,i}^G \dot{z}_{c,i}, \ x_{c,i}(t_0) = x_{ci0},$$

Proved [Liu,4]: when $\dot{z}_{c,i}=0,\ x_{ci0}=0,\ \Rightarrow\ x_{c,i}=0$

System-level

when all
$$\dot{z}_{c,i} = 0$$
, $x_{ci0} = 0$, \Rightarrow ensured QoR for each iBA-C

QoR: monitoring via investigating the time variation of IntVs

Control objective of E-AGC

- Objective: cost-effectiveness
 - Acceptable frequency QoR of the closed-loop system
 - Avoidance of utilizing high-cost control resources
- Control criteria:
 - To maintain the IntVs of all iBA-Cs at constant
 - To reduce system-wide control cost by using coordination

Design of the E-AGC

System-level LQR-based output-feedback control design

IntVs of all iBA-Cs in the system: $z_s^C = \left[z_{c,1}, z_{c,2}, \dots, z_{c,N_s^{ir}}
ight]^T$.

$$\min_{u_{ir}} \quad J = \frac{1}{2} \int_{t_0}^{\infty} \left[(z_s^C)^T Q_{ir}^z z_s^C + (u_{ir})^T R_{ir}^z u_{ir} \right] d\tau,$$

s.t.
$$\dot{x}_{ir} = A_{ir}x_{ir} + B_{ir}u_{ir}, \ x_{ir}(t_0) = x_{ir0}.$$

Resulting centralized control law for each component:
$$u_{c,i}^{eagc} = -\sum_{i=1}^{N_c^{ir}} k_{c,ij} z_{c,j}. \quad u_{ir}^{eagc} = \begin{bmatrix} u_{c,1}^{eagc} \\ \vdots \\ u_{N_c^{ir}}^{eagc} \end{bmatrix}$$

IntVs used as the information for control coordination

Control input signals to the speed governor comprise of the signals of the proposed stabilization control and the E-AGC

$$u_{c,i} = u_{c,i}^{loc} + u_{c,i}^{eagc}$$

Dynamic E-AGC –Generalization of today's Steady State AGC

- Widely used frequency QoR control: Automatic Generation Control (AGC)
- Control objective: decentralized at each control area, causing high system-level control cost
 - Acceptable frequency QoR of the closed-loop system
 - Efficient utilization of control resources at the control-area level
- Control criteria: steady state-based
 - To maintain the ACE of each control area at zero via PID control

$$ACE = (P_{tie} - P_{tie}^{ref}) + 10\beta_A (f_A - f_A^{ref}), \text{ where } f_A = \frac{\omega_A}{2\pi}$$

A control area

- To coordinate control resources according to pre-specified participation factors
- E-AGC provides system-level coordination of controllers contributing to QoR
 - IntV (dynamic IEE) used as the feedback signal
 - Dynamic model used for control design
 - LQR-based design technique used for achieving system-level coordination

Implementation in SGRS: Module Definition

Generalized Module Mapping Table:

Component Name	iBA-C(Gen)	iBA-C(Load)	iBA-C(Dist)	iBA-IR
Module Type	EAGC/Gen	FAGC_L/Dist	EAGC_Dist	EAGC

Generalized Module Class Definition Table

Module Type	iBA-C(Gen/Load/Dist)	iBA-IR
Module Methods	Inty Z measurement Comm from EAGC (read()) Region 2 Region 2 Region 2 Send Inty Z Information for the Inty-based E-AGC Run function (while loop)	Calculater Compute control signal u^{eagc} Commuto iBA-C Commuto iBA-C Commuto iBA-C Commuto iBA-C Commuto iBA-C Commuto iBA-C Gend u^{eagc} Gend u^{eagc} Commuto iBA-C Gend u^{eagc} Gend u^{eagc} Gend u^{eagc} Gend u^{eagc} Gend u^{eagc} Commuto iBA-C Gend u^{eagc}
		Run function (while loop)

Implementation in SGRS: Communication Infrastructure

Communications Setup Table:

From	EAGC_Gen	EAGC	EAGC_L/Dist	EAGC
То	EAGC	EAGC_Gen	EAGC	EAGC_L/Dist

Illustration of the Proposed QoR Analysis and Control

- Test system: the 5-bus system with the proposed stabilization control
- Closed-loop system response under 0.1 p.u. disturbance at L3

Effective Control of IntV by E-AGC (a) before; (b) after

- (a) before: inconstant IntVs, indicating problematic frequency QoR
- (b) after: constant IntVs, indicating recovered frequency QoR

Performance on Recovering the Nominal Frequency

Comparison between E-AGC and AGC (a) before control; (b) after E-AGC; (c) after AGC

Illustration of Reduced Control Effort Needed for Stabilization by Combining with E-AGC

Summary

- The "structure" of a multi-layered dynamic system created by relative dynamics of its (groups of) components and their dynamic interactions
- One novel QoR control (E-AGC) is proposed for acceptable QoR, which eliminates the conserved net power imbalance without excessive control effort
- The proposed model-based E-AGC approach doesn't require steady state assumption,
 then it can be applied to the system with time varying persistent disturbance
- Only IntV information is communicated. It requires less sensing and communication effort and can be practically implemented in large scale system
- Generalized modules and communication infrastructure in SGRS are defined and it will be one of the SGRS applications in the future.

Reference

- 1. X. Miao, K.D. Bachovchin, M. D. Ilic . Effect of load type and unmodeled dynamics in load on the equilibria and stability of electric power system. Submitted to CDC 2015
- 2. M.D. Ilic and Qixing Liu. Toward standards for model-based control of dynamic interactions in large electric power grids. In Signal Information Processing Association Annual Summit and Conference (APSIPA ASC) 2012, pages 1–8, 2012.
- M. D. Ilic and J. Zaborszky, Dynamics and Control of Large Electric Power Systems. New York:
 Wiley Interscience, 2000
- Q. Liu. Wide-Area Coordination for Frequency Control in Complex Power Systems. Ph.D. Thesis,
 Carnegie Mellon University, Aug 2013.
- 5. M. D. Ilic and X.S. Liu. A simple structural approach to modeling and analysis of the inter-area dynamics of the large electric power systems: Part I— linearized models of frequency dynamics. In Proceedings of the 1993 North American Power Symposium, pages 560–569, Washington, DC, October 1993.

Questions?

