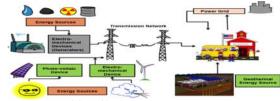


2015 CMU Electricity Conference

A Systems Approach to Model a Micro-Grid Cyber-Physical System in Urban Cities

Ammar Ibn Yasser & Professor John S. Baras

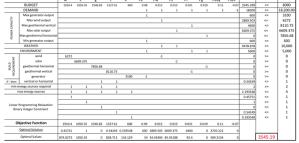

Institute for Systems Research. University of Maryland

A. JAMES CLARK SCHOOL OF ENGINEERING

Motivation

- The growth outlook of alternative energy in the US increases day after day and accounts for 32 percent of the overall growth in electricity generation from 2011 to 2040
- Dynamic micro-grid platforms will operate connected to the power grid while maintaining the ability to stand alone to increase efficiency and local reliability
- operations research approach taken to understand the cost-effectiveness of using renewable energy based microgrids for power generation

Figure 1: Power Network Flow Model


Operations Research Formulation

The overall goal of this formulation is to select a set of renewable energy sources to build with minimum cost such that maintenance and startup costs fall within the budget, and that we are not purchasing an abundant amount from the grid, while still satisfying the power demand.

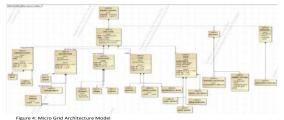
Objective Function: Minimize total cost: $\sum_{j} C_{j}X_{j} + \sum_{r} M_{r}P_{r} + p_{e}P_{e} + p_{b}B - p_{s}S$

Constraints:
$\sum_{j} C_{j}X_{j} + \sum_{r} M_{r}P_{r} + p_{e}P_{e} + p_{b}B - p_{s}S \leq Budget$
$\sum P_r + P_e + B - S \ge Demand$
r

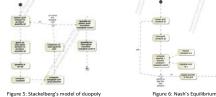

Environmental & Weather	e	Build Requirement
$P_w + P_s \le 10,000$	Capacity	$6272 X_w - P_w \ge 0$
$P_e + P_t + P_q \le 5,000$	$600 \le P_e \le 3100$	$6609.38 X_s - P_s \ge 0$
Minimum Ren. Energy sources	$P_w \le 6272$ $P_r \le 6609.38$	$7856.68 X_g - P_g \ge 0$
$X_g + X_t + X_s + X_w \ge 2$	$P_s \leq 6609.38$ $P_a \leq 7856.68$	$8110.75X_t - P_t \ge 0$
Maximum Energy source		$3100X_e - P_e \ge 0$
selection (size limitation)	$P_t \le 8110.65$	Either Horizontal or Vertical
$X_g + X_t + X_s + X_w + X_e \le 4$	$P_g \leq 7856.68$	$X_g + X_t \le 1$

Figure 2: Excel Solver Simulation

Optimization


- Linear Relaxation of binary constraints was implemented to apply the Branch & Bound technique. The optimal solution is at node [14] where w=g=0 and s=t=e=1 at a value of 4135.1
- Genetic Algorithm is selected as the meta-heuristic for this problem. There are seven steps in this heuristic: <u>Initialization</u>, <u>Crossover</u>, <u>Mutation</u>, <u>Evaluation</u>, <u>Selection and Evolution</u>.

Component-Based Modeling


In this project, our goal has been to provide systems engineering models of the structure and behavior of a microgrid. Systems Engineering models have been created with respect to three viewpoints: a function-based analysis, a behavior model, and lastly a cyber-physical based decomposition.

• Functionally, the Micro-Grid has been divided into many subsystems.


Behavior modeling

- A systems engineer's perspective through an economist's model can be taken as such:
 - Stackelberg (1934) proposed a dynamic model of duopoly in which a dominant or leader firm moves first and a subordinate or follower firm moves second
 - Nash's equilibrium is reached when many individuals (players) make the best personal decisions they can, while also taking into account the decisions made by everyone else

Cyber-Physical System Model

- To promote a sustainable smart city, the smart grid must take into account the collaborating computational elements that control the physical entities.
- These CPS aspects of the system are modeled below including the obstacles and threats we see possible in implementing a micro-grid.

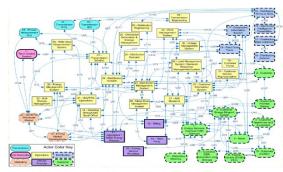


Figure 8: Logical Interface Categories in the Smart Grid Architecture Model

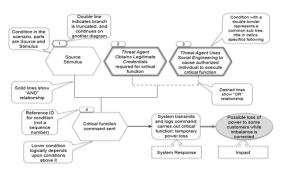


Figure 9: Attack trees for Smart Grids