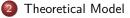
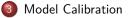
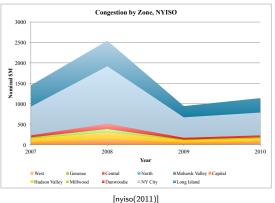
Markets and Demand Management Coupling with Renewable Energy Sources


Alberto J. Lamadrid


Eighth Annual Carnegie Mellon Conference on the Electricity Industry, 2012 CMU, Pittsburgh, March 14th 2012

Outline



イロト イポト イヨト イヨト

Motivation

What is the cost of network congestion?

New York State

2011 Congestion Assessment and Resource Integration Study (CARIS)

Four metrics used: Bid- Production Cost (BPC) as primary metric, then Load Payments , Generator Payments, and Congestion Payments.

Relevance

This research addresses a fundamental issue in the operation of the system with storage resources

- **(1)** How to securely dispatch a set of previously committed generators
- On the use of inter-temporal resources for both time arbitrage and uncertainty mitigation
- 9 Point of view of ISO (social planner), maximizing social welfare
- Research combines engineering, economic models, and knowledge of system constraints to identify solutions for better renewable integration

Ongoing research at Cornell, Tim Mount, Dick Schuler, Bob Thomas, Ray Zimmerman, Carlos E. Murillo-Sanchez, Lindsay Anderson, support provided by PSERC

< ロト < 同ト < ヨト < ヨト

Where does this research stand?

No. 181. 121. 121. 215. 040

0.0 x (d) + 2 + + 2 + - 2 + - 0 + 0

2012 58 / 64

Literature

Electricity Markets

[Harvey and Hogan(2002)]: bidding behavior in California crisis [Kamat and Orre(2003)]: two settlemen markets and contract formation [Jackow and Tirole(2007)]: Model for demand management with hereogeneous consumers [Walak(2007)]: complex lists, ramping costs [Manar(2008)]: Cournet competition and supply in PJM [Manar(2008)]: Cournet competition and supply in PJM [Sichansia and Demander Control [Sichansia and Demander[Anclark] services from PHEV's Capital Cood Replacement [Res(1997)]: Pacificacement of goods [Silau, Samaras, Hauffe, and Michalek(2009)]: deterioration of batteries for VGS service

Engineering Models

Network Model

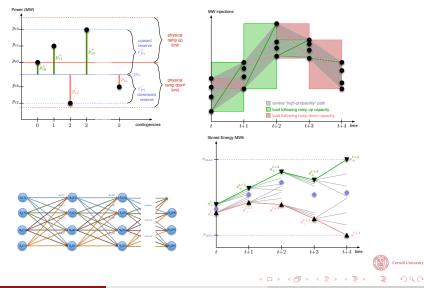
[Capentier[1962]]: optimal power flow formulation [Outherd[1998]]: Astralian Market design, ancillary services [Zhang, Wang, and Luh(2000)]: dispatch of generators with ramping constraints [Cherk, Mount, Thorp, and Thomas(2005)]: Co-optimization [Conders, Geta, and Damongdullamijorn(2006)]: management of uncertainty (contingecies) [Louby, Mebono, Denny, and O Malley(2009)]: Montecarlo approach Regulatory [USCongress(2005)]: Electricity Modernization Act of 2005 [NEEC(2011)]: set of reliability standards

Electricity Markets

- Co-optimizing energy and reserves → solve optimal amounts
- Use of Full AC Network
- Economic management of demand (deferrable)
- Modeling of renewables uncertainty
- Engineering and Economical modeling of Energy Storage Systems (ESS)

< ロト < 同ト < ヨト < ヨト

A Multiperiod, Security Constrained Optimal Power Flow


Determining the optimal power flows for operations and planning on an AC network using Kirchhoff's Laws.

Traditional Approach	Our Approach	
Break into manageable sub-problems.	Simultaneous co-optimization with explicit contingencies and load following requirements	
Sequential optimization using proxy constraints	Combine into single mathematical programming framework.	
DC approximations	AC Network and Dispatch coordination Scheme	
Inter-temporal Constraints in UC model	Explicit Inter-temporal constraints for generators AND Energy Storage Systems (ESS)	
misleading prices	more accurate prices	

- E - N

Image: A match a ma

Overall Characteristics

Demand Management and Transmission

Simplified objective function and eq. constraints

Objective:

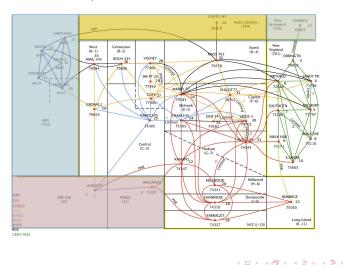
$$\begin{aligned} \min_{G_{itsk}, R_{itsk}, \text{LNS}_{jtsk}} \sum_{t \in \mathscr{T}} \sum_{s \in \mathscr{S}^{t}} \sum_{k \in \mathscr{K}} \pi_{tsk} \left\{ \sum_{i \in \mathscr{I}} \left[C_{G_{i}}(G_{itsk}) + \operatorname{Inc}_{its}^{+}(G_{itsk} - G_{itc})^{+} + \operatorname{Dec}_{its}^{-}(G_{itc} - G_{itsk})^{+} \right] \\ \sum_{j \in \mathscr{J}} \operatorname{VOLL}_{j} \operatorname{LNS}(G_{tsk}, R_{tsk})_{jtsk} \right\} + \\ \sum_{t \in \mathscr{T}} \rho_{t} \sum_{i \in \mathscr{I}} \left[C_{R_{it}}^{+}(R_{it}^{+}) + C_{R_{it}}^{-}(R_{it}^{-}) + C_{L_{it}}^{+}(L_{it}^{+}) + \\ C_{L_{it}}^{-}(L_{it}^{-}) + \right] + \sum_{t \in \mathscr{T}} \rho_{t} \sum_{s_{2} \in \mathscr{I}^{t}} \sum_{s_{1} \in \mathscr{I}^{t-1}} \sum_{i \in \mathscr{I}^{s_{2}0}} \left[\operatorname{Rp}_{it}^{+}(G_{its_{2}} - G_{its_{1}})^{+} + \operatorname{Rp}_{it}^{-}(G_{its_{2}} - G_{its_{1}})^{+} \right]
\end{aligned} \tag{1}$$

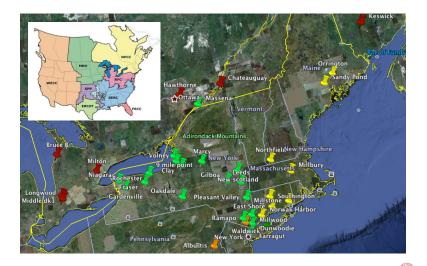
Subject to meeting demand and all network constraints (e.g. Active power flow equations)

$$p_{it} - \sum_{j \in n_B} |v_{jt}| |v_{it}| \Big[G_{ijt} \cos(\theta_i - \theta_j) + B_{ijt} \sin(\theta_i - \theta_j) \Big] = 0, \forall i \in \mathscr{B}, t \in \mathscr{T}_{\bigcirc} \text{ constitutes the states}$$

A.J. Lamadrid (Cornell University)

Input Information


PCA on historical data to determine wind sites [NREL(2010)]

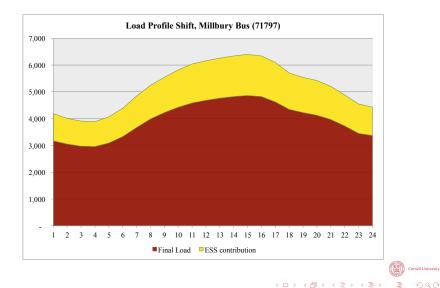

- k-means clustering to specify the scenarios for the day[Guojun Gan(2007)]
- Data from New York and New England to calibrate load profile [NYISO(2011)]
- Network based on [Allen, Lang, and Ilic(2008)], heavily modified

North East Test network

No changes in generation/load out of NY-NE

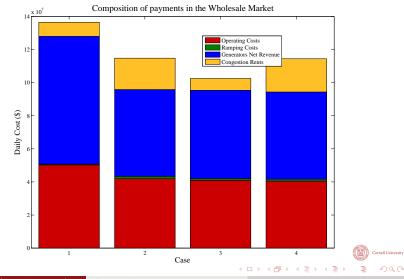
Geographical Location

イロト イボト イヨト イヨト


Cases studied

Main Cases Studied

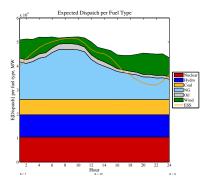
- Case 1: Base Case, no wind
- Ocase 2: Wind added in 16 locations in NYNE
- Case 3: Wind + Deferrable Demand (DD).
- Case 4: Wind Collocated with Storage

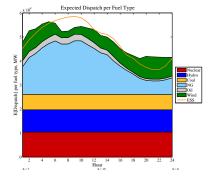

Details Location

How Deferrable Demand is Calculated

March 14 2012 13

Payments in the System

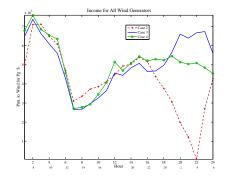



Demand Management and Transmission

March 14 2012 14

Expected Dispatch per Case

Cases 3 and 4

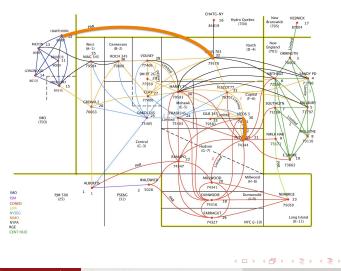


イロト イボト イヨト イヨ

Dispatch 1 and 2

Wind Compensation

Total Wind Compensation (USD Millions)


Case 2	Case 3	Case 4
10.112	12.262	12.094

A.J. Lamadrid (Cornell University)

Demand Management and Transmission

Observed Congestion

Upgrades improves overall welfare in the system

Congestion in Real System

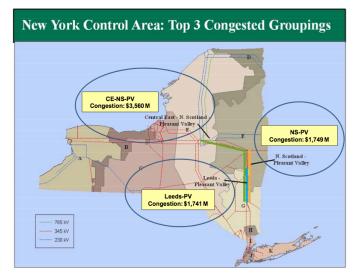
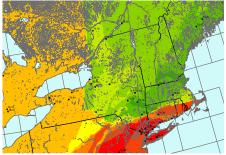



Figure 2: Congestion on the Top Three CARIS Studies (Present Value in 2011 \$M)

Geographical Effects

Nodal Prices at low demand periods

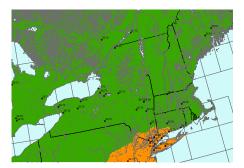


Image: A match a ma

Storage Management

Time Arbitrage versus Uncertainty Mitigation

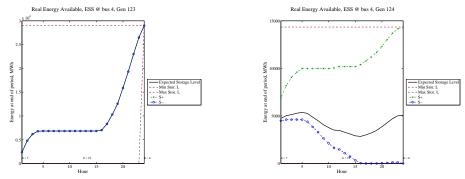
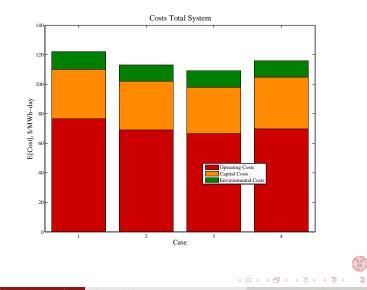



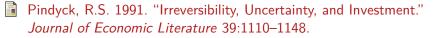
Image: A matching of the second se

System Costs per Energy Delivered

Conclusions

- Deferrable Demand both reduces capacity requirements and weighted operating costs
- Value of Storage lies in mechanisms for trading off uncertainty and time arbitrage
- Stochastic solution properly maintains system security and adequacy.
- Intelligent management of demand delivers higher value than transmission upgrades

- Allen, E., J. Lang, and M. Ilic. 2008. "A Combined Equivalenced-Electric, Economic, and Market Representation of the Northeastern Power Coordinating Council U.S. Electric Power System." *Power Systems, IEEE Transactions on* 23:896–907.
- Carpentier, J. 1962. "Contribution a l'etude du dispatching economique." Bulletin de la Societe Francaise des Electriciens 3:431–447.
- Chen, J., T.D. Mount, J.S. Thorp, and R.J. Thomas. 2005.
 "Location-based scheduling and pricing for energy and reserves: a responsive reserve market proposal." *Decis. Support Syst.* 40:563–577.
- Condren, J., T. Gedra, and P. Damrongkulkamjorn. 2006. "Optimal power flow with expected security costs." *Power Systems, IEEE Transactions on* 21:541–547.
- Guojun Gan, J.W., Chaoqun Ma. 2007. Data Clustering: Theory, Algorithms, and Applications, Society for Industrial and Applied Mathematics.


• • • • • • • • • • • • •

- Harvey, S., and W. Hogan. 2002. "Market power and market simulations." Working paper, Center for Business and Government, John F. Kennedy School of Government, July.
- Joskow, P., and J. Tirole. 2007. "Reliability and Competitive Electricity Markets." *The RAND Journal of Economics* 38:pp. 60–84.
- Kamat, R., and S. Oren. 2004. "Two-settlement Systems for Electricity Markets under Network Uncertainty and Market Power." *Journal of Regulatory Economics* 25:5–37.
- Mansur, E.T. 2008. "Measuring Welfare in Restructured Electricity Markets." *The Review of Economics and Statistics* 90:369–386.
- NERC. 2011. Reliability Standards for the Bulk Electric Systems of North America, NERC, ed. 116-390 Village Road, Princeton, NJ, 08540: North American Electric Reliability Corporation.
- NREL. 2010. "Eastern wind integration and transmission study: Executive Summary and Project Overview." Working paper, EnerNex Control of the study of the stud

Corporation, The National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401, January.

- nyiso, N. 2011. "2011 Congestion Assessment and Resource Integration Study." Working paper, New York Independent System Operator.
- Outhred, H. 1998. "A review of electricity industry restructuring in Australia." *Electric Power Systems Research* 44:15 – 25.

Rust, J. 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher." *Econometrica* 55:pp. 999–1033.

environmental benefits of plug-in hybrid vehicles." *Energy Policy* 37:2653 – 2663.

- Sioshansi, R., and P. Denholm. 2010. "The Value of Plug-In Hybrid Electric Vehicles as Grid Resources." *The Energy Journal* 0.
- Tuohy, A., P. Meibom, E. Denny, and M. O'Malley. 2009. "Unit Commitment for Systems With Significant Wind Penetration." *Power Systems, IEEE Transactions on* 24:592–601.
- USCongress. 2005. *Energy Policy Act*, P. L. 109-58, ed. 109th Congress of the United States of America.
- Wolak, F.A. 2007. "Quantifying the supply-side benefits from forward contracting in wholesale electricity markets." *Journal of Applied Econometrics* 22:1179–1209.
- Zhang, D., Y. Wang, and P. Luh. 2000. "Optimization based bidding strategies in the deregulated market." *Power Systems, IEEE Transactions on* 15:981 –986.

< ロト < 同ト < ヨト < ヨト

Thank you ajl259@cornell.edu

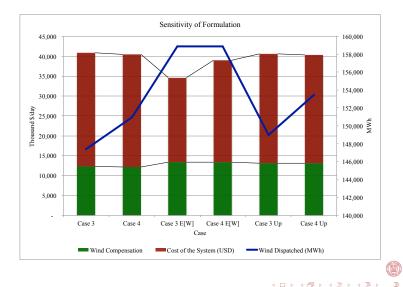
A.J. Lamadrid (Cornell University) Demand Management and Transmission

March 14 2012 23

イロト イヨト イヨト イヨト

Sensitivity to Wind and Network Specification

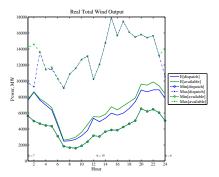
Consider the following two cases:

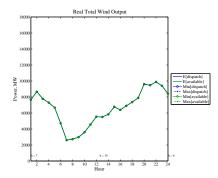

- Assume Wind is perfectly forecastable, and its output is at the expected level over the day (Case E[W])
- Assume the network is not constrained, (Case Up)

How does this affect the following four metrics?

- Operating Costs
- Wind Dispatched
- Generation Capacity Needed
- Oppensation to Wind Owners

Costs, Dispatches and Wind Compensation

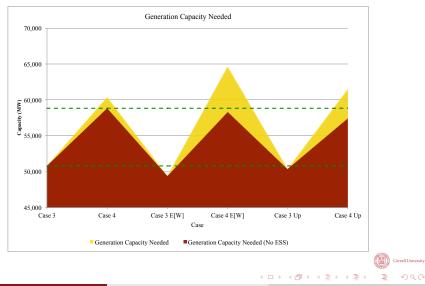



A.J. Lamadrid (Cornell University)

March 14 2012 25

How the Available Wind is Dispatched

Cases 3 and 3E



イロト イポト イヨト イヨ

Prices system

Capacity Needed for Adequacy

March 14 2012 27

Literature

Electricity Markets

[Harvey and Hogan(2002)]: bidding behavior in California crisis [Kamat and Oren(2004)]: two settlement markets and contract formation [Joskow and Tirole(2007)]: Model for demand management with heterogeneous consumers [Wolak(2007)]: complex bids, ramping costs [Mansur(2008)]: Cournot competition and supply in PJM **Optimal ESS Management** [Pindyck(1991)]: Stochastic control [Sioshansi and Denholm(2010)]: Ancillary services from PHEV's Capital Good Replacement [Rust(1987)]: replacement of goods [Shiau et al.(2009)Shiau, Samaras, Hauffe, and Michalek]: deterioration of batteries for V2G services

< ロト < 同ト < ヨト < ヨト

Engineering Models

Network Model

[Carpentier(1962)]: optimal power flow formulation

[Outhred(1998)]: Australian Market design, ancillary services

[Zhang, Wang, and Luh(2000)]: dispatch of generators with ramping constraints

[Chen et al.(2005)Chen, Mount, Thorp, and Thomas]: Co-optimization [Condren, Gedra, and Damrongkulkamjorn(2006)]: management of uncertainty (contingecies)

[Tuohy et al.(2009)Tuohy, Meibom, Denny, and O'Malley]: Montecarlo approach

Regulatory

[USCongress(2005)]: Electricity Modernization Act of 2005 [NERC(2011)]: set of reliability standards

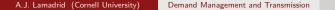
(日)

Some of the Constraints...

And reactive power flow equations

$$q_{it} - \sum_{j \in n_{B}} |v_{jt}| |v_{it}| \left[G_{ijt} \sin(\theta_{i} - \theta_{j}) - B_{ijt} \cos(\theta_{i} - \theta_{j}) \right] = 0,$$

$$\forall i \in \mathcal{B}, t \in \mathcal{T}$$
(2)


And inequalities, e.g.,

$$-R_{P_{i}}^{\mathrm{PHYS-}} \leq p_{it} - p_{i,t-1}^{t} \leq R_{P_{i}}^{\mathrm{PHYS+}}, \forall i \in \mathscr{G}, t \in \mathscr{T}$$

$$\sum_{t \in \mathscr{T}} e_{it} \cdot t = 0, \forall i \in \mathscr{E}$$

$$\tag{3}$$

Back

-

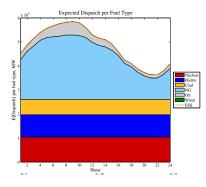
イロト イヨト イヨト イ

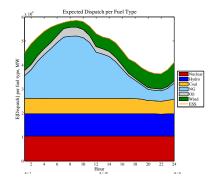
Characteristics of the generation fleet, 36-Bus system

Summary of Generation Capacity and Load, NPCC system

	Capacity per Fuel Type (MW)					Total Cap.	Load		
RTO	coal	ng	oil	hydro	nuclear	wind	refuse	(GW)	(GW)
isone	1,840	9,219	4,327	1,878	5,698	0	0	22.9	23.8
marit.	2,424	1,072	22	641	641	0	0	4.8	3.5
nyiso	4,557	18,185	5,265	7,345	4,714	30	55	40.1	38.2
ont.	5,287	3,594	0	779	12,249	0	0	21.9	21.1
pjm	14,453	14,611	8,915	2,604	12,500	0	0	53.1	51,6
quebec	0	0	0	800	0	0	0	800	0
Total	28.562	46.681	18.530	14.048	35.802	30	55	143.7	138.4
Total NYNE	6,397	27,404	9,592	9,223	10,412	30	55	63	62
Rp.C.	30	10	10	60	60	0	60		

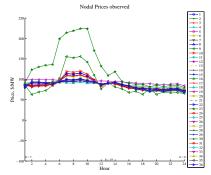
Back

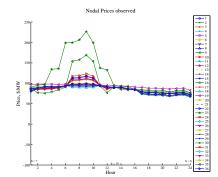

Wind and Storage Locations


Area	Bus	Place	Wind (MW)	ESS (MWh)	DL (MWh)
NE	70002	Orrington	1725	7,332	
NE	71786	Sandy Pond	3375	14,345	29,000
NE	71797	Millbury	1560	6,630	15,000
NE	72926	Northfield	2157	9,168	
NE	73106	Southington	1145	4,867	
NE	73110	Millstone	1478	6,282	
NE	73171	Norwalk Harbor	2560	10,881	
NY	74316	Dunwodie	241	1,024	24,000
NY	74327	Farragut (NYC)			52,000
NY	75050	Newbridge	142	604	
NY	77950	9M. Point	1922	8,169	
NY	78701	Leeds	1327	5,640	
NY	79578	Massena	3000	12,751	
NY	79581	Gilboa	1705	7,247	
NY	79583	Marcy	1373	5,836	
NY	79584	Niagara	3672	15,607	16,000
NY	79800	Rochester	4616	19,619	
Total			31,998	136,000	136,000
 Back 					

Expected Dispatch per Case

Cases 1 and 2


イロト イボト イヨト イヨ


Back

Final Nodal Prices

Cases 3 and 3E

イロト イヨト イヨト イ

