
Markets and Demand Management Coupling with
Renewable Energy Sources

Alberto J. Lamadrid

Eighth Annual Carnegie Mellon Conference on the Electricity Industry, 2012
CMU, Pittsburgh, March 14th 2012

A.J. Lamadrid (Cornell University) Demand Management and Transmission March 14 2012 1



Outline

1 Motivation

2 Theoretical Model

3 Model Calibration

4 Cases and results

A.J. Lamadrid (Cornell University) Demand Management and Transmission March 14 2012 2



Motivation

What is the cost of network congestion?
New York State
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[nyiso(2011)]

2011 Congestion Assessment and Resource Integration Study (CARIS)
Four metrics used: Bid- Production Cost (BPC) as primary metric, then Load Payments
, Generator Payments, and Congestion Payments.
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Motivation

Relevance

This research addresses a fundamental issue in the operation of the system
with storage resources

1 How to securely dispatch a set of previously committed generators
2 The use of inter-temporal resources for both time arbitrage and

uncertainty mitigation
3 Point of view of ISO (social planner), maximizing social welfare
4 Research combines engineering, economic models, and knowledge of

system constraints to identify solutions for better renewable
integration

Ongoing research at Cornell, Tim Mount, Dick Schuler, Bob Thomas, Ray
Zimmerman, Carlos E. Murillo-Sanchez, Lindsay Anderson, support
provided by PSERC
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Theoretical Model

Where does this research stand?

t	  

• t	  

 

Literature

Electricity Markets
[Harvey and Hogan(2002)]: bidding behavior in California crisis
[Kamat and Oren(2004)]: two settlement markets and contract formation
[Joskow and Tirole(2007)]: Model for demand management with
heterogeneous consumers
[Wolak(2007)]: complex bids, ramping costs
[Mansur(2008)]: Cournot competition and supply in PJM
Optimal ESS Management
[Pindyck(1991)]: Stochastic control
[Sioshansi and Denholm(2010)]: Ancillary services from PHEV’s
Capital Good Replacement
[Rust(1987)]: replacement of goods
[Shiau, Samaras, Hau�e, and Michalek(2009)]: deterioration of batteries
for V2G services
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Engineering Models

Network Model
[Carpentier(1962)]: optimal power flow formulation
[Outhred(1998)]: Australian Market design, ancillary services
[Zhang, Wang, and Luh(2000)]: dispatch of generators with ramping
constraints
[Chen, Mount, Thorp, and Thomas(2005)]: Co-optimization
[Condren, Gedra, and Damrongkulkamjorn(2006)]: management of
uncertainty (contingecies)
[Tuohy, Meibom, Denny, and O’Malley(2009)]: Montecarlo approach
Regulatory
[USCongress(2005)]: Electricity Modernization Act of 2005
[NERC(2011)]: set of reliability standards

Back
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Co-optimizing energy and
reserves → solve optimal
amounts
Use of Full AC Network
Economic management of
demand (deferrable)
Modeling of renewables
uncertainty
Engineering and Economical
modeling of Energy Storage
Systems (ESS)

Full Literature
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Theoretical Model

A Multiperiod, Security Constrained Optimal Power Flow

Determining the optimal power flows for operations and planning on an
AC network using Kirchhoff’s Laws.

Traditional Approach Our Approach

Break into manageable
sub-problems.

Simultaneous co-optimization with explicit
contingencies and load following requirements

Sequential optimization
using proxy constraints

Combine into single mathematical programming
framework.

DC approximations AC Network and Dispatch coordination Scheme

Inter-temporal Constraints
in UC model

Explicit Inter-temporal constraints for generators
AND Energy Storage Systems (ESS)

misleading prices more accurate prices
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Theoretical Model

Overall Characteristics
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Theoretical Model

Simplified objective function and eq. constraints
Objective:

min
Gitsk ,Ritsk ,LNSjtsk

∑
t∈T

∑
s∈S t

∑
k∈K

πtsk

{∑
i∈I

[
CGi (Gitsk )+

Inc+its (Gitsk − Gitc )
+ + Dec−its (Gitc − Gitsk )

+

]
∑
j∈J

VOLLj LNS(Gtsk , Rtsk )jtsk

}
+

∑
t∈T

ρt

∑
i∈I

[C+
Rit

(R+
it ) + C−Rit

(R−it ) + C+
Lit

(L+it )+

C−Lit
(L−it )+] + +

∑
t∈T

ρt

∑
s2∈S t

∑
s1∈S t−1

∑
i∈I ts20[

Rp+
it (Gits2 − Gits1 )

+ + Rp−it (Gits2 − Gits1 )
+
]

(1)

Subject to meeting demand and all network constraints (e.g. Active power flow
equations)

pit −
∑
j∈nB

|vjt ||vit |
[
Gijt cos(θi − θj) + Bijt sin(θi − θj)

]
= 0,∀i ∈ B, t ∈ T
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Model Calibration

Input Information
1 PCA on historical data to determine wind sites [NREL(2010)]

2 k-means clustering to specify the scenarios for the
day[Guojun Gan(2007)]

3 Data from New York and New England to calibrate load profile
[NYISO(2011)]

4 Network based on [Allen, Lang, and Ilic(2008)], heavily modified

A.J. Lamadrid (Cornell University) Demand Management and Transmission March 14 2012 9



Model Calibration

North East Test network

No changes in generation/load out of NY-NE
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Model Calibration

Geographical Location

Details Fleet
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Cases and results

Cases studied

Main Cases Studied
1 Case 1: Base Case, no wind
2 Case 2: Wind added in 16 locations in NYNE
3 Case 3: Wind + Deferrable Demand (DD).
4 Case 4: Wind Collocated with Storage
Details Location
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Cases and results

How Deferrable Demand is Calculated
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Cases and results

Payments in the System
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Cases and results

Expected Dispatch per Case

Cases 3 and 4
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Cases and results

Wind Compensation
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Cases and results

Observed Congestion

Upgrades improves overall welfare in the system
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Cases and results

Congestion in Real System
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Cases and results

Geographical Effects

Nodal Prices at low demand periods
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Cases and results

Storage Management

Time Arbitrage versus Uncertainty Mitigation
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Cases and results

System Costs per Energy Delivered
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Cases and results

Conclusions

Deferrable Demand both reduces capacity
requirements and weighted operating costs
Value of Storage lies in mechanisms for trading off
uncertainty and time arbitrage
Stochastic solution properly maintains system security
and adequacy.
Intelligent management of demand delivers higher
value than transmission upgrades
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Cases and results

Thank you
ajl259@cornell.edu
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Cases and results

Sensitivity to Wind and Network Specification

Consider the following two cases:
1 Assume Wind is perfectly forecastable, and its output is at the

expected level over the day (Case E[W])
2 Assume the network is not constrained, (Case Up)

How does this affect the following four metrics?
1 Operating Costs
2 Wind Dispatched
3 Generation Capacity Needed
4 Compensation to Wind Owners
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Cases and results

Costs, Dispatches and Wind Compensation
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Cases and results

How the Available Wind is Dispatched

Cases 3 and 3E
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Cases and results

Capacity Needed for Adequacy
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Cases and results

Literature

Electricity Markets
[Harvey and Hogan(2002)]: bidding behavior in California crisis
[Kamat and Oren(2004)]: two settlement markets and contract formation
[Joskow and Tirole(2007)]: Model for demand management with
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[Wolak(2007)]: complex bids, ramping costs
[Mansur(2008)]: Cournot competition and supply in PJM
Optimal ESS Management
[Pindyck(1991)]: Stochastic control
[Sioshansi and Denholm(2010)]: Ancillary services from PHEV’s
Capital Good Replacement
[Rust(1987)]: replacement of goods
[Shiau et al.(2009)Shiau, Samaras, Hauffe, and Michalek]: deterioration of
batteries for V2G services
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Cases and results

Engineering Models

Network Model
[Carpentier(1962)]: optimal power flow formulation
[Outhred(1998)]: Australian Market design, ancillary services
[Zhang, Wang, and Luh(2000)]: dispatch of generators with ramping
constraints
[Chen et al.(2005)Chen, Mount, Thorp, and Thomas]: Co-optimization
[Condren, Gedra, and Damrongkulkamjorn(2006)]: management of
uncertainty (contingecies)
[Tuohy et al.(2009)Tuohy, Meibom, Denny, and O’Malley]: Montecarlo
approach
Regulatory
[USCongress(2005)]: Electricity Modernization Act of 2005
[NERC(2011)]: set of reliability standards

Back
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Cases and results

Some of the Constraints...

And reactive power flow equations

qit −
∑
j∈nB

|vjt ||vit |
[

Gijt sin(θi − θj )− Bijt cos(θi − θj )

]
= 0,

∀i ∈ B, t ∈ T

(2)

And inequalities, e.g.,

−RPHYS−
Pi ≤ pit − pt

i,t−1 ≤ RPHYS+
Pi , ∀i ∈ G , t ∈ T (3)∑

t∈T
eit · t = 0,∀i ∈ E (4)

Back
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Cases and results

Characteristics of the generation fleet, 36-Bus system

Summary of Generation Capacity and Load, NPCC system

Capacity per Fuel Type (MW) Total Cap. Load

RTO coal ng oil hydro nuclear wind refuse (GW) (GW)

isone 1,840 9,219 4,327 1,878 5,698 0 0 22.9 23.8
marit. 2,424 1,072 22 641 641 0 0 4.8 3.5
nyiso 4,557 18,185 5,265 7,345 4,714 30 55 40.1 38.2
ont. 5,287 3,594 0 779 12,249 0 0 21.9 21.1
pjm 14,453 14,611 8,915 2,604 12,500 0 0 53.1 51,6
quebec 0 0 0 800 0 0 0 800 0

Total 28,562 46,681 18,530 14,048 35,802 30 55 143.7 138.4
Total NYNE 6,397 27,404 9,592 9,223 10,412 30 55 63 62

Rp.C. 30 10 10 60 60 0 60

Back
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Cases and results

Wind and Storage Locations

Area Bus Place Wind (MW) ESS (MWh) DL (MWh)

NE 70002 Orrington 1725 7,332
NE 71786 Sandy Pond 3375 14,345 29,000
NE 71797 Millbury 1560 6,630 15,000
NE 72926 Northfield 2157 9,168
NE 73106 Southington 1145 4,867
NE 73110 Millstone 1478 6,282
NE 73171 Norwalk Harbor 2560 10,881
NY 74316 Dunwodie 241 1,024 24,000
NY 74327 Farragut (NYC) 52,000
NY 75050 Newbridge 142 604
NY 77950 9M. Point 1922 8,169
NY 78701 Leeds 1327 5,640
NY 79578 Massena 3000 12,751
NY 79581 Gilboa 1705 7,247
NY 79583 Marcy 1373 5,836
NY 79584 Niagara 3672 15,607 16,000
NY 79800 Rochester 4616 19,619

Total 31,998 136,000 136,000
Back
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Cases and results

Expected Dispatch per Case

Cases 1 and 2
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Cases and results

Final Nodal Prices

Cases 3 and 3E
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