

ARPA-E Investments in a More Flexible Grid

Tim Heidel Fellow ARPA-E

ARPA-E Mission

Reduce Energy Imports

To enhance the economic and energy security of the U.S.

To ensure U.S. technological lead in developing and deploying advanced energy technologies

Reduce Energy-Related Emissions Improve Energy Efficiency • Find and fund high-risk, high-impact projects

 Invest in the best ideas and teams

 Will tolerate and manage high technical risk

• Accelerate translation from science to markets

 Proof of concept and prototyping

ARPA-E Portfolio

arp

What makes an ARPA-E project?

1. Impact

- High impact on ARPA-E mission areas
- Credible path to market
- Large commercial application

2. Transform

- Challenges what is possible
- Disrupts existing learning curves
- Leaps beyond today's technologies

3. Bridge

- Translate science into breakthrough technology
- Not researched or funded elsewhere
- Catalyzes new interest and investment

4. Team

- Best-in-class people
- Cross-disciplinary skill sets
- Translation oriented

State of the U.S. grid

Huge Opportunity for New Technology Adoption

Existing infrastructure lifetimes

Black & Veatch, "2009/2010 Fourth annual strategic directions In the electric utility industry survey."

Substantial growth of non-dispatchable generation

7

As demand varies...

...day-ahead & spot markets coordinate generation

...generators startup/shutdown and spin up/down

...power flows are inversely proportional to path impedances

...loads draw power from the grid.

Delivering Electricity: Actuators

<u>Storage</u> Make renewables dispatchable

December 2010 Workshop Results

GENI GRID HARDWARE & SOFTWARE

PROJECTS:	15	FUNDING YEAR:	2011	
TOTAL INVESTMENT:	\$39.4 million	PROGRAM DIRECTOR:	Dr. Rajeev Ram	1 5
PROJECT DETAILS:	www.arpa-e.energy.gov/ProgramsProjects/GENI.aspx			

Hardware advancements to more efficiently direct the flow of power on the grid, help stem energy losses, and enable the grid to be more responsive and resilient. **Software technologies** to leverage advances in computing and data communications to optimize grid operations, match power delivery to real-time demand, and find effective ways to manage renewable power sources and grid-level power storage.

Transmission Topology Optimization

Potential Impact Example:

- ISO-NE: 689 generators, 2209 loads, 4500 bus, 6600 binary variables
- Topology control (DC-OPF) to optimize state of only 4 transmission lines
- Solution Time: 82 hrs [CPLEX on dual-core 3.4GHz, 1GB RAM]
- Savings 5% for summer peak conditions/ 7% for a medium load summer condition. Hedman, K. W., O'Neill, R. P., Fisher, E. B., and Oren, S. S. (2011), "Smart flexible just-in-time transmission and flowgate bidding," IEEE Transactions on Power Systems, Feb 2011.

Implementation of TC in the entire US electrical grid could save of \$1-2 billion in generation costs per year and reduce transmission investments needs.

Transmission Topology Optimization

Routing Power

Potential Impact Example:

- GA Tech study of simplified IEEE 39 Bus system with 4 control areas.
- Operation simulated for 20 years, 20% RPS phased in over 20 years, sufficient transmission capacity added each year to eliminate curtailment of renewable generation.)

Power Routing

- Power flow control to route power along underutilized paths \rightarrow 80% less new transmission infrastructure required.

arpa.

Cloud Computing for the Power System

Strong reliability guarantees are rarely required in commercial cloud computing software and hence not supported, but are crucial for increasingly stressed grids facing renewable integration. This project will develop a comprehensive suite of software with such strong guarantees to enable the next generation of control software while not requiring power engineers to become experts in reliable computing and cyber-security.

Cornell University

Potential Impact

- Slash time and difficulty to prototype and demo new smart-grid control paradigms
- Enable networked control software to be used to build fault-tolerant, scalable actuation logic
- Enable a new kind of cloud-computing "hosted service" tailored to the properties of emerging smart-grid uses
- Enable robust and timely delivery of large amounts of synchrophasor and other data
- Simulation validation of all above

Highly Dispatchable and Distributed Demand Response for Integration of Distributed Generation

• OpenADR, IP-based telemetry solutions, and intelligent forecasting and optimization techniques to provide "personalized" dynamic price signals to millions of customers in timeframes suitable for providing ancillary services to the grid

Questions?

Tim Heidel timothy.heidel@hq.doe.gov 202-287-6146

ARPA-E's History

ARPA-E's program development process is extremely fast

Creating New Learning Curves

