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Problem

I Problem: Sparse Lower-Upper (LU) Triangular Decomposition
performs inefficiently on general-purpose processors (irregular data
access, indexing overhead, less than 10% FP efficiency on power
systems) [3, 12]

I Solution: Custom designed hardware can provide better performance
(3X speedup over Pentium 4 3.2GHz) [3, 12]

I Problem: Complex custom hardware is difficult, expensive, and
time-consuming to design

I Solution: Use a balance of software and hardware accelerators (ex:
FPU, GPU, Encryption, Video/Image Encoding, etc.)

I Problem: Need an architecture that efficiently combines
general-purpose processors and accelerators

[3] T. Chagnon. Architectural Support for Direct Sparse LU Algorithms.
[12] P. Vachranukunkiet. Power Flow Computation using Field Programmable Gate

Arrays.
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Goals

I Increase performance of sparse LU over existing software

I Design a flexible, easy to use hardware accelerator that can integrate
with multiple platforms

I Find an architecture that efficiently uses the accelerator to improve
sparse LU
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Summary of Results and Contributions

I Designed and implemented a merge hardware accelerator [5]
I Data rate approaches one element per cycle

I Designed and implemented supporting hardware [6]
I Implemented a prototype Triple Buffer Architecture [5]

I Efficiently utilize external transfer bus
I Not suitable for sparse LU application
I Advantageous for other applications

I Implemented a prototype heterogeneous multicore architecture [6]
I Combines general-purpose processor and reconfigurable hardware cores
I Speedup of 1.3X over sparse LU software with merge accelerator

I Modified Data Pump Architecture (DPA) Simulator
I Added merge instruction and support
I Implemented sparse LU on the DPA
I Speedup of 2.3X over sparse LU software with merge accelerator

[5] Cunningham, Nagvajara. Reconfigurable Stream-Processing Architecture for
Sparse Linear Solvers.

[6] Cunningham, Nagvajara, Johnson. Reconfigurable Multicore Architecture for
Power Flow Calculation.
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Power Systems

I The power grid delivers electrical power from
generation stations to distribution stations

I Power grid stability is analyzed with Power
Flow (aka Load Flow) calculation [1]

I System nodes and voltages create a system of
equations, represented by a sparse matrix [1]

I Solving the system allows grid stability to be
analyzed

I LU decomposition accounts for a large part of
the Power Flow calculation [12]

I Power Flow calculation is repeated thousands
of times to perform a full grid analysis [1]

Power Flow Execution Profile [12]

[1] A. Albur. Power System State Estimation: Theory and Implementation.
[12] P. Vachranukunkiet. Power Flow Computation using Field Programmable Gate

Arrays.
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Power System Matrices

Power System Matrix Properties

System # Rows/Cols NNZ Sparsity

1648 Bus 2,982 21,196 0.238%

7917 Bus 14,508 105,522 0.050%

10278 Bus 19,285 134,621 0.036%

26829 Bus 50,092 351,200 0.014%

Power System LU Statistics

System Avg. NNZ Avg. Num % Merge
per Row Submatrix Rows

1648 Bus 7.1 8.0 65.6%

7917 Bus 7.3 8.5 54.3%

10279 Bus 7.0 8.3 55.8%

26829 Bus 7.0 8.7 62.7%
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Power System LU

I Gaussian LU
outperforms UMFPACK
for power matrices [3]

I As matrix size grows,
multi-frontal becomes
more effective

I The merge is a
bottleneck in Gaussian
LU performance [3]

I Goal: Design a hardware
accelerator for the Merge
in Gaussian LU

Gaussian LU vs UMFPACK on Intel Core i7
at 3.2GHz [3]

1648 Bus 7917 Bus 10279 Bus 26829 Bus
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[3] T. Chagnon. Architectural Support for Direct Sparse LU Algorithms.
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Sparse Matrices

I A matrix is sparse when it has a large number of zero elements

I Below is a small section of the 26K-Bus power system matrix

A =


122.03 −61.01 −5.95 0 0
−61.01 277.93 19.38 0 0
5.95 −19.56 275.58 0 0
0 0 0 437.82 67.50
0 0 0 −67.50 437.81
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Sparse Compressed Formats

I Sparse matrices use a compressed format to ignore zero elements

I Saves storage space

I Decreases amount of computation

Row Column:Value

0

1

2

3

4

122.030 -61.011 -5.952

-61.010 277.931 19.382

5.950 -19.561 275.582

437.823 67.504

-67.503 437.814
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Sparse LU Decomposition

A =


122.03 −61.01 −5.95 0 0
−61.01 277.93 19.38 0 0
5.95 −19.56 275.58 0 0
0 0 0 437.82 67.50
0 0 0 −67.50 437.81



L =


1.00 0 0 0 0
−0.50 1.00 0 0 0
0.05 −0.07 1.00 0 0
0 0 0 1.00 0
0 0 0 −0.15 1.00

 U =


122.03 −61.01 −5.95 0 0

0 247.42 16.41 0 0
0 0 276.97 0 0
0 0 0 437.82 67.50
0 0 0 0 448.22
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Sparse LU Methods

I Approximate Minimum Degree (AMD) algorithm pre-orders matrices
to reduce fill-in [2]

I Multiple methods for performing sparse LU:
I Multi-frontal

I Used by UMFPACK [7]
I Divides matrix into multiple, independent, dense blocks

I Gaussian Elimination
I Eliminates elements below the diagonal by scaling and adding rows

together

[2] Amestoy et al. Algorithm 837: AMD, an approximate minimum degree ordering
algorithm.

[7] T. Davis. Algorithm 832: UMFPACK V4.3 - An Unsymmetric-Pattern
Multi-Frontal Method.
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Sparse LU Decomposition

Algorithm 1 Gaussian LU

for i = 1→ N do
pivot search()
update U()
for j = 1→ NUM SUBMATRIX ROWS do

merge(pivot row , j)
update L()
update colmap()

end for
end for
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Column Map

I Column map keeps track of the rows with non-zero elements in each
column

I Do not have to search matrix on each iteration

I Fast access to all rows in a column

I Select pivot row from the set of rows

I Column map is updated after each merge

I Fill-in elements add new elements to a row during the merge
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Sparse LU Decomposition

7 3   2       8

   4 1   5   2    +
7 7 1 2 5   2 8 Row u+v

0 1 2 3 4 5 6 7Column

Row u

Row v

I Challenges with software merging:

I Indexing overhead
I Column numbers are different from row array indices
I Must fetch column numbers from memory to operate on elements
I Cache misses
I Data-dependent branching
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Sparse LU Decomposition

Merge Algorithm

i n t p , s ;
i n t rnz =0, f n z =0;
f o r ( p=1, s =1; p < p i vo tLen && s < nonp ivo tLen ; ) {
i f ( nonp i vo t [ s ] . c o l == p i v o t [ p ] . c o l ) {
merged [ rnz ] . c o l = p i v o t [ p ] . c o l ;
merged [ rnz ] . v a l = ( nonp i vo t [ s ] . v a l − l x ∗ p i v o t [ p ] . v a l ) ;
rnz++; p++; s++;

} e l s e i f ( nonp i vo t [ s ] . c o l < p i v o t [ p ] . c o l ) {
merged [ rnz ] . c o l = nonp i vo t [ s ] . c o l ;
merged [ rnz ] . v a l = nonp i vo t [ s ] . v a l ;
r nz++; s++;

} e l s e {
merged [ rnz ] . c o l = p i v o t [ p ] . c o l ;
merged [ rnz ] . v a l = (− l x ∗ p i v o t [ p ] . v a l ) ;
f i l l i n [ f n z ] = p i v o t [ p ] . c o l ;
r nz++; fn z++; p++;

}
}
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LU Hardware

I Originally designed by Petya Vachranukunkiet[12]

I Straightforward Gaussian Elimination

I Parameterized for power system matrices

I Streaming operations
hide latencies

I Computation pipelined for
1 Flop / cycle

I Memory and FIFOs used for
cache and bookeeping

I Multiple merge units possible
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Pivot and Submatrix Update Logic
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Custom Cache Logic

I Cache line is a whole row

I Fully-associative, write-back, FIFO replacement
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Reconfigurable Hardware

I Field Programmable Gate Array
(FPGA)

I Advantages:
I Low power consumption
I Reconfigurable
I Low cost
I Pipelining and parallelism

SRAM Logic Cell [13]

I Disadvantages:
I Difficult to program
I Long design compile times
I Lower clock frequencies

FPGA Architecture [13]

[13] Xilinx, Inc. Programmable Logic Design Quick Start Handbook.
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ASIC vs FPGA

Application-Specific Integrated
Circuit (ASIC)

I Higher clock frequency

I Lower power consumption

I More customization

Field Programmable Gate Array
(FPGA)

I Reconfigurable

I Design updates and corrections

I Multiple designs in same area

I Lower cost

I Less implementation time
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Merge Hardware Accelerator

I Input and Output BlockRAM FIFOs

I Two compare stages allow look-ahead
comparison

I Pipelined floating point adder

I Merge unit is pipelined and outputs one
element per cycle

I Latency is dependent on the structure
and length of input rows

+

U Stage 1 V Stage 1

U Stage 2 V Stage 2

U FIFO V FIFO

Merged

CMP
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Merge Hardware Manager

I Must manage rows going
through merge units

I Pivot row is recycled

I Floating point multiplier scales
pivot row before entering merge
unit

I Can support multiple merge
units

I Input and output rotate among
merge units after each full row

I Rows enter and leave in the
same order

Merge
Unit

Output
FIFO

Pivot
FIFO

Non
Pivot
FIFO

Output
FIFO

Pivot
FIFO

Non
Pivot
FIFO

* *si si

Merge
Unit
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Merge Performance

Software Merge Performance on Core i7 at 3.2GHz
Power System Average Data Rate Average Cycles

(Millions of Elements per Second) per Element

1648 Bus 90.77 35.3

7917 Bus 99.54 32.2

10279 Bus 100.75 31.8

26829 Bus 97.46 32.8

I Merge accelerator:
I Outputs one element per cycle
I Data rate approaches hardware clock rate
I FPGA clock frequencies provide better merge performance than

processor

I Goal: Find an architecture that efficiently delivers data to the
accelerator
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Summary of Design Methods

I Completely Software (UMFPACK, Gaussian LU)
I Inefficient performance

I Completely Hardware (LUHW on FPGA)
I Large design time and effort
I Less scalable

I Investigate three accelerator architectures:
I Triple Buffer Architecture

I Efficiently utilize external transfer bus to a reconfigurable accelerator

I Heterogeneous Multicore Architecture
I Combine general-purpose and reconfigurable cores in a single package

I Data Pump Architecture
I Take advantage of programmable data/memory management to

efficiently feed an accelerator

Johnson (Drexel University) HW Acceleration for Load Flow March 13, 2012 30 / 47



Accelerator Architectures

CPU

Mem Mem

FPGA

I Common setup for processor and FPGA

I Each device has its own external memory

I Communicate by USB, Ethernet, PCI-Express, HyperTransport, ...

I Transfer bus can be bottleneck between processor and FPGA
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Triple Buffer Architecture

CPU

Mem Mem

FPGA CPU
FPGA

Buffer 1

Transfer BUS

Low 
Latency 
Memory 
Banks

Buffer 2

Buffer 3

I How to efficiently use transfer bus?

I Break data into blocks and buffer

I Three buffers eliminate competition on memory ports

I Allows continuous stream of data through FPGA accelerator

I Processor can transfer data at bus/memory rate, not limited by FPGA
rate
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Heterogeneous Multicore Architecture

I Communication with an external
transfer bus requires additional
overhead

I Merge accelerator does not
require a large external FPGA

I Closely integrate processor and
FPGA

I Share same memory system

Reconfigurable Processor Architecture
[8]

[8] Garcia and Compton. A Reconfigurable Hardware Interface for a Modern
Computing System.

Johnson (Drexel University) HW Acceleration for Load Flow March 13, 2012 33 / 47



Heterogeneous Multicore Architecture

DDR Memory

CPU
(Microblaze)

AXI 

DMA

Reconfigurable 

Core

AXI LITE

AXI

AXI
STREAM

Reconfigurable Processor Architecture
[8]

[8] Garcia and Compton. A Reconfigurable Hardware Interface for a Modern
Computing System.
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Heterogeneous Multicore Architecture

DDR Memory

CPU
(Microblaze)

AXI 

DMA

Reconfigurable 

Core

AXI LITE

AXI

AXI
STREAM

I Processor sends DMA requests
to DMA module

I DMA module fetches data from
memory and streams to
accelerator

I Accelerator streams outputs
back to DMA module to store
to memory
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Data Pump Architecture

Data Pump Architecture [11]

I Developed as part of the SPIRAL project
I Intended as a signal processing platform
I Processors explicitly control data movement
I No automatic data caches
I Data Processor (DP) moves data between external and local memory
I Compute Processor (CP) moves data between local memory and

vector processors

[11] SPIRAL. DPA Instruction Set Architecture V0.2 Basic Configuration.
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Data Pump Architecture

Data Pump Architecture [11]

I Replace vector processors with merge accelerator

I DP brings rows from external memory into local memory

I CP sends rows to merge accelerator and writes results in local memory

I DP stores results back to external memory

[11] SPIRAL. DPA Instruction Set Architecture V0.2 Basic Configuration.
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DPA Implementation

Data Pump Architecture [11]

I Implemented Sparse LU on DPA Simulator [10]

I DP and CP synchronize with local memory read/write counters

I Double buffer row inputs and outputs in local memory

I DP and CP at 2GHz, DDR at 1066MHz

I Single merge unit

[11] SPIRAL. DPA Instruction Set Architecture V0.2 Basic Configuration.
[10] D. Jones. Data Pump Architecture Simulator and Performance Model.
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DPA Implementation

Sparse LU DP

Initialize Matrix 

in External Memory

Load row and column 

counts, and column 

map to Local Memory

Load pivot 

row

Load other 

submatrix rows

Wait for CP

< N?

Store updated 

counts to 

External Memory

Yes No

Store merged 

rows to 

External Memory

End

Sparse LU CP

Wait for DP to 
load counts

Wait for DP to load 
submatrix rows

Merge rows

Update column 
map

< N?
Yes

No

End
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DPA Performance

I Increase performance by
double buffering rows

I DP alternates loading to
two input buffers

I CP alternates outputs to
two output buffers

I DP and CP at 2GHz,
DDR at 1066MHz

I Merge accelerator at
same frequency as CP

DPA Single vs Double Buffer Speedup
Against Gaussian LU
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DPA Performance
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I Measured with different merge
frequencies

I Slower merges do not provide
speedup over software

I Faster merges require ASIC
implementation

I Larger matrices see most benefit
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DPA Performance
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I DP and CP at 3.2GHz

I DDR at 1066MHz

DPA LU Speedup vs Gaussian LU for
26K-Bus Power System

CP/DP 10 times 5 times 2 times Same as
Freq slower slower slower CP

2.0GHz 0.57X 1.00X 1.85X 2.27X

3.2GHz 0.86X 1.45X 2.28X 2.35X
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Overview

I Problem and Goals

I Background

I LU Hardware

I Merge Accelerator Design

I Accelerator Architectures

I Performance Results

I Conclusions
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Conclusions and Future Work

I Merge accelerator reduces indexing cost and improves sparse LU
performance (2.3X improvement)

I DPA architecture provides a memory framework to utilize merge
accelerator and outperforms triple buffering and heterogeneous
multicore schemes investigated

I Software control of memory hierarchy allows alternate protocols such
as double buffering to be investigated

I Additional modifications such as multiple merge units, row caching
and prefetching will be required for further improvement

I With accelerator, high performance load flow calculation is possible
with low power device

I Suggesting a distributed network of such devices
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