

Ships at Sea: The Original Microgrids?

Eighth Annual Carnegie Mellon Conference on the Electricity Industry

Dr. Timothy McCoy, PE Director PMS 320

Distribution Statement A: Distribution is unlimited.

- Brief History of Electricity in the US Naval Fleet
- Today's Marine Power System Drivers
 - Naval Ships
 - Commercial Ships
- Shipboard Power Systems vs. Terrestrial Power Systems
- Ongoing Developments
- Summary

United States Navy

"Without a Navy the Nation's commerce will be at the mercy Of any who would choose to prey upon it" - Alexander Hamilton

Content subject to Distribution Statement on cover page.

US Navy Electric Ships History

A History of Successful Development and Transition

History of U.S. Navy Electric Ships

USS JUPITER (AC 3) Commissioned 1913

Collier

USS LANGLEY (CV 1) Recommissioned 1922 First U.S. Navy Aircraft Carrier

History of U.S. Navy Electric Ships

USS NEW MEXICO (BB 40) Commissioned 1918 U.S. Navy's First Electric Propulsion Combatant

Shipboard Power & Propulsion Systems

IPS brings back 'integration' on the <u>electrical side</u>, enabled by:

- Solid State Power Electronics
- Multi-Megawatt Motor Drives
- Automated Controls

0.26%

6%

fuel consumption

- Fuel cost uncertainty (~400% per bbl increase since FY03)
- Energy (fuel) Demand Increasing

U.S. Navy Fuel Usage and Trends

- Combat / Weapons Power
- Force Structure Changing: **Higher Fuel Consumption**
- Operational Requirements
- Why focus on DDG 51 Class?
 - Provides best opportunity for long term payoff given platform age, production restart, and quantity

9%

Opportunities for Energy Savings

- Prime Movers
 - Technical advances
 - Combined cycles
- Ship Propulsion
 - Propulsor efficiency
 - Hullform resistance
 - Energy Recovery
- Electrical Loads
 - Fans / Pumps
 - Mission Systems
 - Lighting
 - Variable Frequency Drives
- Operating Concepts
 - Alternate Architecture optimizes Fuel Consumption

Alternate Architectures Maximizes Energy Savings

Warfighting Needs Drive Power Systems

Age of Guns

Age of Guns and Missiles Age of Guns, Missiles, Directed Energy & Hypervelocity Weapons

Increased demands for power will continue for the foreseeable future

Mission Systems: Increasing Electrical Power Demands

Sensor and Weapon System Power Demands will soon rival Propulsion Power Demands

Example Ship Power System Loads

Placeholder for Videos

Loads Behaving Badly

Commercial Marine Power Systems Design Drivers

14

- IMO MARPOL Annex VI Emissions Regulations
 - Limits NO_x Emissions
 - **Limits Fuel Sulfur Content**
 - **Requires implemenation of:**
 - Energy Efficiency Design Index (EEDI), for new ships
 - Ship Energy Efficiency Management Plan (SEEMP) for all ships.

MARPOL Annex VI NO_x Limits¹

MARPOL Annex VI Sulfur Limits¹

Content subject to Distribution Statement on cover page.

Content subject to Distribution Statement on cover page.

140

120

100

80 60

40

0

Commercial Marine Power Systems Design Drivers

Crude Oil Price History²

Real Price (Feb 2012 \$)

Monthly Imported Crude Oil Price

Jan 1974 Jan 1978 Jan 1982 Jan 1986 Jan 1990 Jan 1994 Jan 1998 Jan 2002 Jan 2006 Jan 2010

Nominal Price

² US Energy Information Administration

Forecast

Terrestrial vs. Marine Power Systems

Terrestrial Power Systems

- Structure generally radial
- Large numbers of generators, busses, transmission lines, loads
- Constant frequency linearized about an operating point
- Load flow analysis
- Market Implications

Marine Power Systems

- Structure zonal / mesh
- Small number of generators, busses, negligible transmission lines
- Large transients, often not linearizeable
- Frequency domain analysis
- No market implications

Ongoing US Navy Power System Developments

- Shipboard Power Systems are evolving due to increases in load demands, environmental regulations and fuel prices
- Terrestrial Power Systems are evolving due to increases in load demands, environmental regulations, fuel prices and market deregulation
- Incorporation of distributed, renewable generation sources and smart grid technologies may make terrestrial systems behave more closely to shipboard systems

Questions?