Carnegie Mellon

Engineering IT-Enabled Electricity Services: The Case of Low-Cost-Green Azores Islands

Prof. Marija Ilić milic@ece.cmu.edu

Pre-Conference Workshop March 12, 2012

Acknowledgments

- This workshop draws heavily on the results in the upcoming Springer Monograph entitled ``Engineering IT-Enabled Sustainable Electricity Services: The Case of Low-Cost Green Azores Islands" (2012, to appear)
- Electricite de Azores (EDA) for providing us with data and allowing it to become the First Public Data Repository of Real World Islands Electric Systems [4,DVD].
- MIT colleagues Stephen Connors, Ned Spang for pointing us to some available data sources; and Canay Ozden for sharing the report on demand characteristics.
- Financial support by the ICTI, CMU-Portugal and MITEI, MIT-Portugal programs; SRC SGRC.
- Early encouragement by Prof. Jose Moura, CMU and Prof. Ernie Moniz, MIT (during Prof. M. Ilic sabbatical).

Carnegie Me

Contributors

- Many members of EESG, CMU (Jon Donadee, Masoud Nazari, Noha Abdel-Karim, Jhi-Young Joo, Nipun Popli, Qixing Liu, Kevin Bachovchin, Milos Cvetkovic, Andrew Hsu, Marija Ilic)
- IST Portugal colleagues (Prof. Luis Marcelino Ferreira, Prof Pedro Carvalho and Dr. Paulo Ferreira)
- Texas A&M colleagues (Prof. Le Xie, Garry Yingzhong)
- Delft TU colleagues (Remco Verzijlbergh, Prof. Zofia Lukzo)
- Prof. Wolfgang Gatterbauer, CMU, Tepper Business

Carnegie Me

Dr. Audun Botterud, Argonne National Lab

Azores Island—Flores

Carnegie Mellon ()

Figure 1: Satellite image of Flores Island.

Outline

- Part I: Intro to IT-enabled sustainable electricity services.
- Part II: Electrical characteristics of the Azores Islands studied. (Flores and Sao Miguel); characteristics of resources and demand.
- Part III: Decision-making tools for balancing forecast demand and generation; wind power and demand power prediction methods.
- Part IV: Methods for managing network congestion; delivery loss minimization.
- Part V: Automated Control for Balancing Supply and Demand in Response to Hard-to-Predict Deviations from Forecast
- Part VI: New methods for ensuring reliable service during equipment failures (on-line scheduling, transient stabilization methods using power electronics).
- Part VII: Methods for long-term decision making (investment in the ``right" technology).

Carnegie Mellon ()

Part I: Introduction to IT-Enabled Electricity Services

- The challenge of designing and operating low-cost green electric energy systems.
- Modeling and problem posing— based on the basic ECE disciplines!
- Dynamical systems view of today's and future electric energy systems.
- The key role of off-line and on-line computing. Too complex to manage relevant interactions using models and software currently used for planning and operations.
- One size IT solution does NOT fit all; but the same interactions variables-based framework can be used— Dynamic Monitoring and Decision Systems (DYMONDS)[5]

Carnegie Mellon

The challenge of designing and operating lowcost green electric energy systems

- Today's sources of energy rely on expensive and polluting fuels
- Making the future (electric) energy system ``green": Use more ``sustainable" resources.
- This trend could lead to high electricity bills and/or hard to provide Quality of Service (QoS)
- Need to take a step back and re-think how today's electric energy systems are operated, sensed and controlled. Production, consumption and delivery must be improved.
- What are obvious enhancements given technological progress (hardware and software)?

Carnegie Mellon

Modeling and problem posing-based on the basic ECE disciplines!

- An important ECE challenge: How to pose the problem, and how to design sensing, communications, automated control and decision-making computer algorithms using well-understood concepts from basic ECE disciplines?
- The boundaries between electric energy processing and other types of energy processing (mechanical to electrical in generators; chemical/wind/hydro, diesel into mechanical and/or electrical) becoming more gray than in the past as new energy resources are used
- One possible unifying path- model the electric energy systems as dynamical systems and use systematic control design to pose the design objectives, and data-driven feedback and decision making for adaptation (18-618, Spring 2012)

Carnegie Mel

An illustrative future system

Fig. 5. Small example of the future electric energy system.

Conventional Power System

The next four slides drawn by Andrew Hsu.

Carnegie Mellon 🅀

More Complex Power System

Modeling Dynamics of Electric Energy Systems

Domains and variables.

	Effort e	Flow f	Generalized Displacement q	Generalized Momentum p
Electric	Voltage V [V]	Current / [A]	Charge q [C]	Flux linkage ϕ [V-s]
Translation	Force F [N]	Velocity v [m/s]	Displacement x [m]	Momentum p [N-s]
Rotation	Torque τ [N-m]	Angular velocity ω [rad/s]	Angular displacement θ [rad]	Angular momentum b [N-m-s]
Fluid	Pressure P [N/m ²]	Volume flow Q [m ³ /s]	Volume V [m ³]	Pressure momentum Γ [N-s/m ²]
Thermodynamic	Temperature T [K]	Entropy flow f _s [W/K]	Entropy S [J/K]	—

$$\underline{x} = \begin{bmatrix} I_L, V_C, & v_{mass}, F_{spring}, & f_S, T \end{bmatrix}$$

Electrical States Mechanical States Thermodynamic States

$$\frac{d\underline{x}}{dt} = \underline{f}\left(\underline{x}, \underline{u}, \underline{p}\right), \qquad \underline{x}(0) = \underline{x}_0$$

Table from: D. Jeltsema and J.M.A. Scherpen. Multidomain modeling of

Future Power Systems

Potential Use of Real-Time Measurements for Data-Driven Control and Decision-Making (new)

- GPS synchronized measurements

 (synchrophasors ; power measurements at
 the customer side.
- The key role of off-line and on-line computing. Too complex to manage relevant interactions using models and software currently used for planning and operations.
- Our proposed design: Dynamic Monitoring and Decision Systems (DYMONDS)

"Smart Grid" ← → electric power grid and IT for sustainable energy SES [5,6]

Energy SES

- Resource system (RS)
- Generation (RUs)
- Electric Energy Users (Us)

Man-made Grid

- Physical network connecting energy generation and consumers
- Needed to implement interactions

Man-made ICT

- Sensors
- Communications

Carnegie Mellon

- Operations
- Decisions and control
- Protection

Proof-of-Concept for Low-Cost Green Flores and Sao Miguel

- Collected data and used to derive dynamic models (linear and non-linear; with wind power dynamics, flywheels and powerelectronics-control included)
 - -equilibrium solutions (power flow); predictive models for wind power and demand power

-demonstrate the use of DYMONDS decision-making algorithms (distributed, MPC-based) for enabling efficient integration of wind power; efficient integration of Adaptive Load Management (ALM); efficient integration of electric vehicles (EVs)

 demonstrate new methods for automated load following, E-AGC and E-AVC for balancing hard-to-predict small wind power fluctuations

16

Carnegie Me

References

- [1] Ilic, M, et al, A Decision Making Framework and Simulator for Sustainable Electric Energy Systems, The IEEE Trans. On Sustainable Energy, TSTE-00011-2010, January 2011.
- [2] Overholdt, P., The NorthAmerican Synchrophasor Initiative (NASPI) and DoE's Smart Investment Grants, EEI Conference, April 13, 2010.
- [3] Azores report
- [4] Engineering IT-Enabled Sustainable Electricity Services: The Case of Low-Cost Azores Islands (co-editors, M. Ilic and Le Xie), Springer Monograph (2012, to appear)
- [5] Ilic, M., Dynamic Monitoring and Decision Systems for Sustainable Electric Energy Systems, Proc. of the IEEE, January 2011.
- [6] Elinor Ostrom, et al, A General Framework for Analyzing Sustainability of social-Ecological Systems, Science 325, 419 (2009).
- [7] MIT Portugal, Universidade dos Açores, "Characterization of the Azorean Residential Building Stock", Report, 2010.

