Cyber-Physical-Business Systems: A Possible Framework

4th CMU Conference on the Electricity Industry

Ron Ambrosio
Senior Technical Staff Member & IBM Global Research Leader, Energy & Utilities Industry
T.J. Watson Research Center, Yorktown Heights, NY

U.S. Dept. of Energy GridWise Architecture Council
Smart Grids as Cyber-Physical-Business Systems

- Intelligent Utility Networks (IUN) are about optimization …
 - of physical asset life-cycle management
 - of capital investment
 - of grid performance – asset utilization, demand mgt, reliability, …
 - of energy resources – carbon intensity, renewables integration, …

- IUN’s must be viewed as extremely large-scale, distributed control systems
 - Because of the transient nature of the commodity the manage, they present challenges not found in many other industry segments
 - Complex system theory, high-performance computing, and many other information technology domains will all have a significant role to play

- Cyber-Physical-Business Systems must be designed for interoperability in the context of business and regulatory processes
 - Solutions must bridge the operational, business, and regulatory domains
 - There are real technical challenges in linking the time-dependent cyber-physical operations domain with the more transactional business and regulatory domains

- In most solution areas, cyber-physical-business systems will need to integrate highly heterogeneous environments
 - Large capital infrastructures turn over very slowly, so we must address that heterogeneity as a primary design requirement, to support evolution of the infrastructures over appropriate timeframes
GridWise

“Bringing the Electricity System into the Information Age”

• Multiple, related government and industry activities
 – DoE GridWise Initiative
 • Under Office of Electricity Delivery and Energy Reliability (OE)
 – DoE GridWise Architecture Council (GWAC)
 • 13 member DoE advisory panel of experts from various industry segments
 – GridWise Alliance industry consortium (GWA)
 • IBM was a charter member and currently holds Chairman of the Board seat
 • Over 60 members as of 1Q2008

• In December 2007, the Architecture Council and the Alliance signed a Memo of Understanding to formalize the collaboration that was already taking place
GWAC focus is on Interoperability

Interoperable Software - Expected Impact:
- Reduces integration cost
- Reduces cost to operate
- Reduces capital IT cost
- Reduces installation cost
- Reduces upgrade cost
- Better security management
- More choice in products
- More price points & features

All items provide compounding benefits
Interoperability – Integration at Arm’s Length

• Exchange of actionable information
 – between two or more systems
 – across organizational boundaries
• Shared meaning of the exchanged information
• Agreed expectation with consequences for the response to the information exchange
• Requisite quality of service in information exchange
 – reliability, fidelity, security
An Interoperability Framework

• Organizing concepts
 – Taxonomy, definitions, levels, tenets
• Attempts to simplify the complex
 – *Warning – it’s still complex*
• Aids communication between community members
 – *Careful – semantics remain a stumbling block*
• Provides perspective from selected viewpoints
• Reveals points where agreement simplifies integration
• Focuses on plight of integrator, not component developer
• **EISA 2007 calls on NIST to define an Interoperability Framework**
 – Directed to work with the GridWise Architecture Council among others
What do we mean by “Framework”?

- **Framework** organizes concepts and provides context for discussion of detailed technical aspects of interoperability
- **Model** identifies a particular problem space and defines a technology independent analysis of requirements
- **Design** maps model requirements into a particular family of solutions
 - Uses standards and technical approaches
- **Solution** manifests a design into a particular developer software technology
 - Ensures adherence to designs, models, and frameworks.

Borrowed from NEHTA: Australian National E-Health Transition Authority
System Integration Philosophy

• Agreement at the interface
 – Create an interaction contract
 – Terms and conditions, consequences for failure to perform…

• Boundary of authority
 – Respect privacy of internal aspects on either side of the interface
 (technology choice and processes)

• Decision making in very large networks
 – Decentralized/autonomous decision-making
 – Multi-agent v. hierarchical approach
 – Addresses scalability, evolutionary change, eases integration

• Role of standards in the framework
 – Encourages standards for improving interoperation
 – Agnostic to specific standards and technologies
Interoperability Categories

Organizational (pragmatic)
- 8: Economic/Regulatory Policy
 - Political and Economic Objectives as Embodied in Policy and Regulation
- 7: Business Objectives
 - Strategic and Tactical Objectives Shared between Businesses
- 6: Business Procedures
 - Alignment between Operational Business Processes and Procedures

Informational (symantic)
- 5: Business Context
 - Awareness of the Business Knowledge Related to a Specific Interaction
- 4: Semantic Understanding
 - Understanding of the Concepts Contained in the Message Data Structures
- 3: Syntactic Interoperability
 - Understanding of Data Structure in Messages Exchanged between Systems
- 2: Network Interoperability
 - Mechanism to Exchange Messages between Multiple Systems across a Variety of Networks
- 1: Basic Connectivity
 - Mechanism to Establish Physical and Logical Connections between Systems

Technical (syntactic)
Framework Areas of Investigation

Interoperability Categories

- 1: Basic Connectivity
- 2: Network Interoperability
- 3: Syntactic Interoperability
- 4: Semantic Understanding
- 5: Business Context
- 6: Business Procedures
- 7: Business Objectives
- 8: Economic/Regulatory Policy

Cross-cutting Issues

- Shared Meaning of Content
- Resource Identification
- Time Synch & Sequencing
- Security & Privacy
- Logging & Auditing
- Transaction & State Mgt
- System Preservation
- Performance/Reliability/Scalability
- Discovery & Configuration
- System Evolution
Multiple Domains of Integration

- **Policy Domain**
 - National and local legislative constructs within which cyber-physical-business systems operate

- **Enterprise Domain**
 - Markets, customer accounts, billing, work and asset management, etc.

- **Operational Domain**
 - Bridges the device and business worlds – understands the relationship between them (e.g., can create market bids based on HVAC state, homeowner goals, and market conditions)

- **Controller Domain**
 - Implements goals of the owner based on control settings; is influenced by the higher-levels in the system (e.g., the market prices)

- **Device Domain**
 - Sensor and actuator space; physical world interface – HVAC, Water Heater, Revenue Meter, etc.
Internet-scale Control Systems (iCS) project at IBM Research

prototype implementation of an event-based integration framework

- Model, at both the design and programming levels, the operational, business, and regulatory domain components of cyber-physical-business system solutions as control elements
 - Sensing: Information collection, data acquisition
 - Controlling: Information/data analysis and decision making
 - Actuating: Action/command output and execution

- Apply loosely-coupled distributed computing technology and event-based programming models to the challenge of integration across the domains: runtime middleware/services, event-based signaling, declarative programming, component/service oriented design, etc.

- Address the issues arising from that integration related to the critical requirements of the operational domain: time-sensitive behavior, secure-signaling, resilient communication
 - Part of our broader Event and Stream Computing Strategy in the area of Cyber-Physical-Business Systems
Guiding Architectural Principles of iCS

- Two communities of developers being supported:
 - Object/device/service developers ("building the widgets")
 - Solution builders/integrators ("composing the widgets into solutions")
- Maintain separation of:
 - Solution object abstraction from solution object implementation
 - Logical solution topology from physical device/network topology
- *Treat time as a fundamental primitive in the programming model*
- Must be designed for relatively small footprint systems
 - Easy to scale up – hard to scale down
- Enable higher-level abstraction and integration of Operational Domain systems and components through encapsulation
 - Accommodate heterogeneity rather than eliminate it
 - Minimize impact on existing Operational Domain systems and skills
Conclusion

- **Interoperability** is an important organizing and design theme for Cyber-Physical-Business Systems
 - EISA 2007 directive to define and Interoperability Framework
- Heterogeneity is here to stay – we must design for it to be successful
 - We are pulling together very diverse systems in multiple domains that weren’t designed to interoperate originally
 - Even when standards exist, they can evolve at a different rate than the deployment of those standards, so we’ll always be faced with integration of heterogeneous components
- Within the Smart Grid space, the DoE GridWise Architecture Council is working with all parts of the *eco-system* (commercial, academic, and policy) to foster a common organizational framework for interoperability (www.gridwiseac.org, www.grid-interop.com)
- At IBM we are using event-based programming frameworks to extend traditional Service Oriented Architecture business systems to enable Cyber-Physical-Business Systems in many industry solutions – this has grown out of our Smart Grid (a.k.a IUN) work