Implementation of NYPA’s Convertible Static Compensator on
the Transient Network Analyzer and OPAL-RT’s FPGA platform
Govind Chavan, Sayan Acharya, Saman Babaei, and Subhashish Bhattacharya

Introduction

- The Convertible Static Compensator (CSC) is a FACTs controller located at Marcy 345kV substation commissioned by the New York Power Authority (NYPA).
- Consists of two 100MVA 48-pulse NPC 3ϕ inverters which can be connected at the Marcy substation in 10 different configurations, including:
 - Static Synchronous Compensator (STATCOM)
 - Static Series Synchronous Compensator (SSSC)
 - Unified Power Flow Controller (UPFC)
 - Inter-Line Power Flow Controller (IPFC)
- The Transient Network Analyzer (TNA) is a scaled-down analog model of the CSC with identical controls and all equipment ratings modified to an equivalent 12VA, 100V system.

Features

- The TNA allows real-time testing of the CSC with fully adjustable sinusoidal 3ϕ voltage sources generated using PWM generators.
- TNA allows injection of low frequency oscillations in source voltage magnitude and angle to allow simulation of transient power system oscillations.
- The TNA results have been validated against actual CSC commissioning test results from site.

References

Accomplishments and Future Work

- Testing of modified controllers for FACTs devices using TNA
 - Capacitive mode performance of STATCOM under single line to ground fault without and with dual angle controller.
 - Inductive mode performance of STATCOM under single line to ground fault without and with dual angle controller.
- Current efforts are underway to create a similar validated real-time model on the RTDS and OPAL-RT real-time simulator platforms.