Game-Theoretic Methods for Distributed Management of Energy Resources in the Smart Grid

Quanyan Zhu and Tamer Başar

Coordinated Science Laboratory and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA. Email: {zhu31, basar1}@uiuc.edu

Introduction

- Game theory provides a versatile set of tools that can be used to analyze multi-layer and multi-agent strategic interactions in the smart grid.

Demand Response

- Users respond to supply and pricing information to balance the demand and supply.
- A risk-sensitive multi-resolution large population game is used to study optimal response and equilibrium as well as emerging phenomena in the large-scale system.
- Interactions among the players come from not only within the zone but also between the zones.
- The mean-field Nash equilibrium solutions are characterized by two coupled PDEs: Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations.

V2G Transactions

- The multi-layer and multi-resolution game is applied to optimal demand response of PHEVs in the smart grid.
- At each parking lot, the arrival and the departure of PHEVs follow a birth-death process.
- The framework enables cross-infrastructure study between power grid and transportation networks.

Distributed Renewable Energy Resources

- With deregulation, independent power providers can enter the electricity market and sell cheap power to the grid.
- A game-theoretic framework addresses how distributed renewable energy resources integrate into power grids for planning and operation.
- Each bus decides on the amount of power P_i to generate and a higher level player decides on rebate rates to incentivize the generation.

$$U_i(P_i, V_i, \theta_i) = c_i P_i + \alpha (P_i^d - P_i) + \frac{1}{2} \gamma_i^1 (V_i - \bar{V}_i)^2 + \frac{1}{2} \gamma_i^2 (\theta_i - \bar{\theta})^2$$