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Nature of long-term Power System 
Oscillations 

•  During system-wide electro-mechanical oscillations, 
the swing energy flows through the power lines back 
and forth between the rotating masses of the different 
generators with a frequency of typically 0.1-1 Hz.  

•  In the case of insufficient damping, small 
disturbances may trigger growing oscillations, that 
lead to loss of synchronization between groups of 
generators and possibly blackouts.  

•  Two types of slow oscillations: 
– Local 
– Interarea 
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Real world example of inter-area oscillation 
form Portugal distribution network 

•  Each area has synchronous machines and wind farms 

•  There is an electromechanical mode of oscillatory between two areas  

•  To resolve the problem Power System stabilizer is implemented 

•  Understanding the nature of inter-area oscillation in power systems is not an 

easy task    
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Outline 

•  Understanding interactions (inter-area dynamics)  
in power systems by drawing analogies with 
mechanical systems and electrical circuits  
– Mechanical systems 

•  Two mass spring system (Interconnected system) 
– Electrical circuits 

•  Two RLC circuits 
– Governor control of synchronous generators for 

frequency control  
– Excitation control of electromagnetic dynamics for 

voltage/reactive power support  [Working Paper] 
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Mechanical Systems  
Two-Mass-Spring System  



Double Mass Spring System 
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Possible System Decomposition 
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The whole system can be represented as: 



Time-domain Response of the Coupled System 
(Smaller friction f = -0.1x2 

m1= m2 = 1, k1 = 0.001, k2 = 1)  

8 



Non-standard Singularly Perturbed 
Form Intepretation 
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Couples system S takes on the form 

€ 

k1 = ε = 0.001

Rank(A(0)) = 3 
That is, in this case  

€ 

ε ˙ X = A(ε)X

€ 

λ A(0)( ) = −0.05 + 4.44i,  − 0.05 − 4.44i,  0, - 0.1{ }



Electrical Circuit Analogy to 
Mass-Spring System 
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Analogous Systems 
Mechanical Quantity Electrical System Analogue 

Displacement, x Charge, Q 

Velocity, v Current, I 

Force, F Voltage, e 

Friction, D Resistance, R 

Spring Constant, K Inverse of Capacitance, 1/C 

Mass, M Inductance, L 

Potential Energy in Spring, (Kx2)/
2 

Energy stored by Capacitor, Q2/
(2C) 

Kinetic Energy in Mass, (Mv2)/2 Energy in Inductor, (Li2)/2 
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Double LC, with resistance 
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Possible System Decomposition 
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The whole system can be represented as: 



•  L1=1; C1=1000; R1=1; L2=1; C2=1; R2=1 

Time-domain Responses of Coupled 
S1 and S2 
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Non-standard Singularly Perturbed 
Form Intepretation 
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Couples system takes on the form 

€ 

1
C1

= ε = 0.001

Rank(A(0)) = 3 
That is, in this case  

€ 

ε ˙ X = A(ε)X

€ 

λ A(0)( ) = 0, − 0.5 +1.32i,  − 0.5 −1.32i,  − 0.9995{ }



Governor Control of Synchronous 
Machines Analogy to Mass-Spring  
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Dynamic Model of Two Machines 
Infinite bus 

Reference Bus Machine 1 Machine 2 

X1 X2 
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Decoupled model 

Power flow: 

€ 
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Time-domain Response of the Coupled 
System 

•  M1=1; K1=1; X1=100; M2=10; K2=1; X2=1 
•  Slow inter-area oscillation (singular characteristic of 

system matrix) 
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Concluding remarks 

•  Understanding analogies between: (1)  
mechanical systems and electrical circuits; and, 
(2) electric power systems, is a good way to 
introduce power systems problems (2) to those 
familiar with (1) [WP…]; 

•  In this presentation we illustrated how can one 
interpret slow inter-area dynamics in power 
systems by understanding simpler systems (1). 

•  We are preparing an extensive paper on these 
analogies;    
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