## Model Predictive Dispatch in Electric Energy Systems with Intermittent Resources

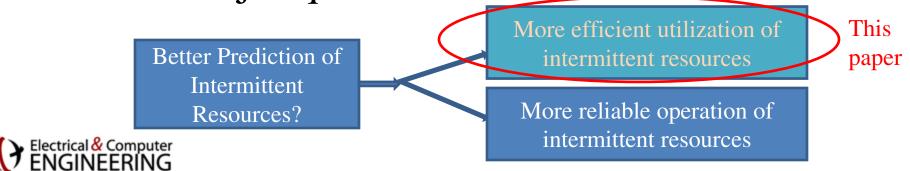
Le Xie and Marija D. Ilic {lx,milic}@ece.cmu.edu March 11, 2009





### Outline

- Motivation
- Problem Formulation
- Proposed Algorithm for Economic Dispatch with Intermittent Resources
- Numerical Examples
- Summary and Future Work



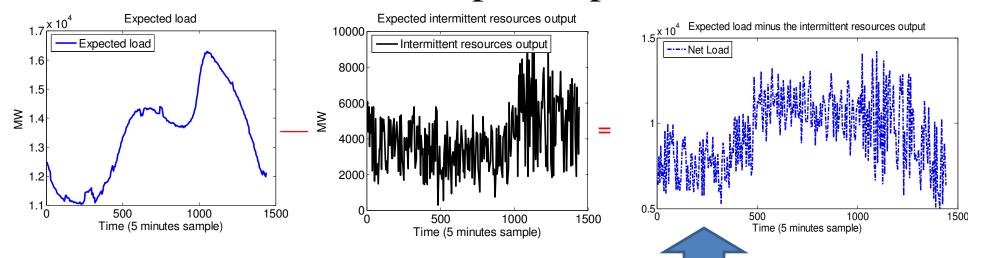

### Motivation

- Increasing presence of renewable energy resources which are
  - Environmentally attractive 😃
  - Intermittent



- Reliability and efficiency concerns for renewable resources due to intermittency
  - Three major questions:




#### Problem Statement

Economic Dispatch (ED): given a mixture of energy resources, how to determine the output of individual energy resources so that (1) power supply always balances demand
(2) total generation cost is minimized?

$$\begin{split} \text{Solve} &: \min_{P_{G_i}(k)} \sum_{k=1}^{K} \sum_{i} C_i(P_{G_i(k)}), i \in G \\ & \text{Solve} : \sum_{P_{G_i}(k)} P_{G_i(k)} = \hat{L}(k), i \in G, k = 1, 2, \cdots, K; \end{split} \begin{array}{c} \text{Total Gen Cost} \\ & \text{Supply=E(Demand \ )} \\ & P_{G_i}^{\min} \leq P_{G_i}(k) \leq P_{G_i}^{\max}, k = 1, 2, \cdots, K; \end{aligned} \begin{array}{c} \text{Gen Constraints} \\ & \text{Ramp rate} \\ & \text{Constraints} \\ & \text{Ramp rate} \\ & \text{Constraints} \\ & \text{Constraint$$

## Conventional Approach to ED

• Supply the expected load with whatever produced by intermittent resources combined with other traditional power plants.



Economic Dispatch (ED): Choose output levels from conventional power plants to meet the "net load" at minimum cost.

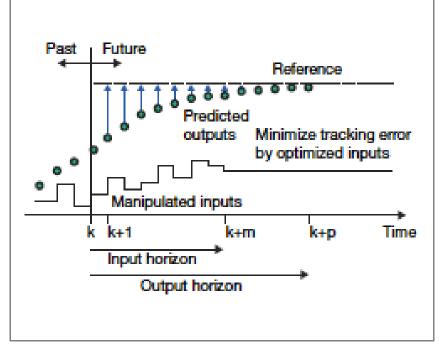


## Conventional Approach to ED

• Pros: 😃



- easy to implement
- computes a reasonably good selection of generator outputs in "old days" when renewable resources are almost negligible in power systems
- Cons:
  - No flexible utilization of intermittent resources
  - High cost of keeping expensive fast-start units on in order to balance the high volatility of intermittent resources

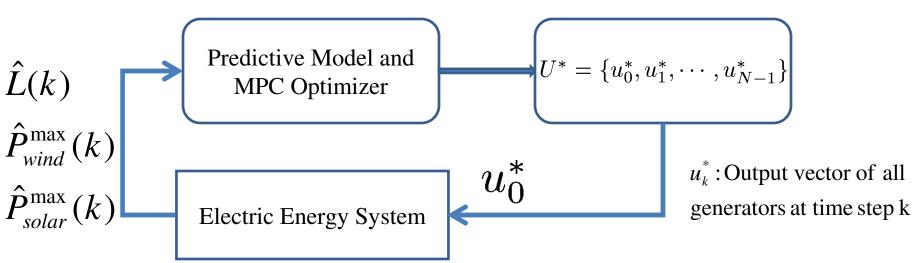



## Proposed Approach: Concept

- Actively control the output of available intermittent resources to follow the trend of time-varying loads.
- By doing so, the need for expensive fast-start fossil fuel units is reduced. Part of the load following is done via intermittent renewable generation.
- The technique for implementing this approach is called model predictive control (MPC).



### Model Predictive Control: Concept




www.jfe-rd.co.jp/en/seigyo/img/figure04.gif

- MPC is receding-horizon optimization based control.
- At each step, a finite-horizon optimal control problem is solved but only one step is implemented.
- MPC has many successful real-world applications.



## Proposed Approach: Algorithm



- Predictive model of load and intermittent resources are necessary.
- Optimization objective: minimize the total generation cost.
- Horizon: 24 hours, with each step of 5 minutes.



### Numerical Experiment

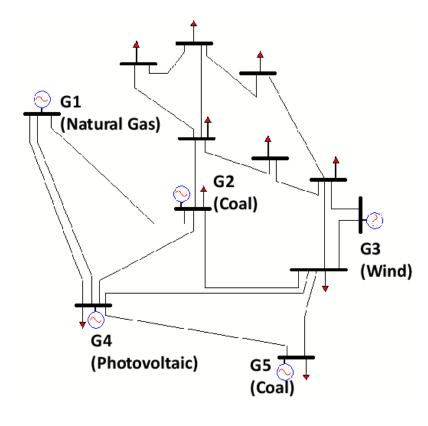
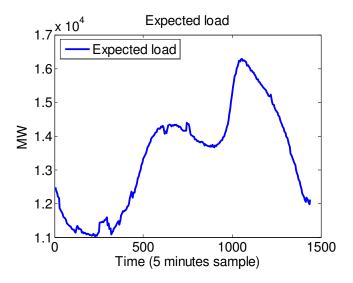
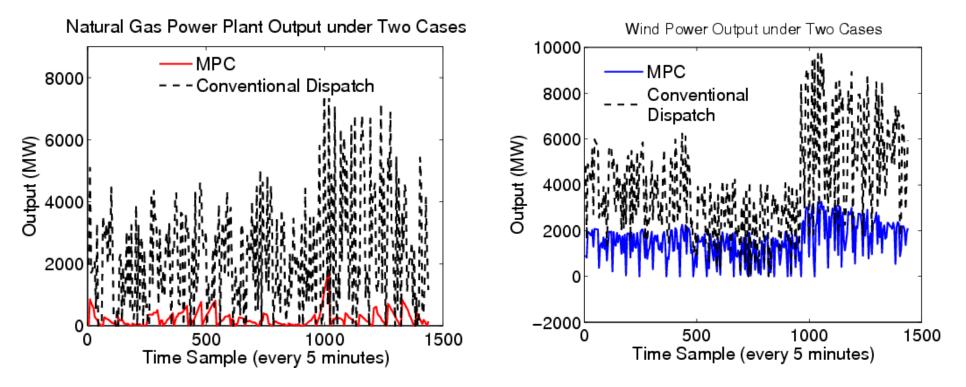




TABLE I GENERATOR PARAMETERS OF THE 12-BUS SYSTEM

| Gen ID | Туре         | Capacity | Marginal Cost | Ramp Rate   |
|--------|--------------|----------|---------------|-------------|
| 1      | Natural Gas  | 5000MW   | 1000\$/MWh    | 100MW/5 min |
| 2      | Coal         | 9000MW   | 500\$/MWh     | 1000MW/hour |
| 3      | Wind         | 3500MW   | 0\$/MWh       | 150MW/5 min |
| 4      | Photovoltaic | 1500MW   | 0\$/MWh       | 100MW/5 min |
| 5      | Coal         | 8000MW   | 300\$/MWh     | 800MW/hour  |




Compare the outcome of ED from both the conventional and proposed approaches.



### Numerical Experiment

|                   | Proposed<br>cost over the year | Difference       | <b>Relative Saving</b> |
|-------------------|--------------------------------|------------------|------------------------|
| \$ 129.74 Million | \$ 119.62 Million              | \$ 10.12 Million | 7.8%                   |



Electrical & Computer

\*: load data from New York Independent System Operator, available online at http://www.nyiso.com/public/market\_data/load\_data.jsp

## Summary

- Look-ahead model predictive dispatch of future energy system is proposed.
- Combined with good short-term prediction of intermittent resource outputs, the proposed method can lower the total generation cost.
- The proposed method provides a benchmark towards optimal percentage of wind generation for grid and for storage.
- More intelligent utilization of intermittent resources can actively follow the load variation trend, thus lower the total generation cost.



#### Future Work

- Scale issue: how to make this algorithm fast enough in large-scale system?
- Multi-objective problem: how to generalize the algorithm to study the tradeoff between environmental and economic costs?
- More realistic model: how to include more realistic factors (e.g. transmission constraints) into the predictive dispatch model?



### Acknowledgement





## Thank you!

# Questions are welcome to be sent to {lx,milic}@ece.cmu.edu or visit us at www.ece.cmu.edu/~eesg



