

A New Framework for Evaluating Candidate Technologies for Future Energy Systems

Marija Prica (<u>marija@ece.cmu.edu</u>)
Marija Ilić (<u>milic@ece.cmu.edu</u>)

Outline

- Motivation
- Main approach
- Performance matrix as a function of technology choice
- Algorithm
- Illustration of concept
- Conclusion

Motivation

- Systematic comparison of candidate technologies for the changing electrical energy industry
- It is insufficient to invest into given technology without accessing its cumulative operational effects (efficiency, reliability, environmental impact...)

Main approach

- An "optimal" technology (type, capacity, location) is the technology whose cumulative operational benefit over time T equals to its capacity cost [5].
- This captures the inter-temporal dependence between short-term effects (operation) and long-term investments (planning).

Performance matrix ...

... as a Function of Technology Choice

- PMT(TC) = Cumulative System Operational Cost
 - + Capital Cost
 - Cumulative Benefit of Customers

Subject to: 1) decisions – driven dynamics

2) natural system dynamics and constraints

Example of ...

- Candidate technologies
 - Load management
 - Software for optimal scheduling
 - Reliability differentiate priority service
 - Advanced generation control
 - Filters for quality of supply

- Distributed generation
- Energy storage; V2G
- > FACTS
- > PMU

- Efficiency measures
 - Delivery losses
 - Reserve requirements

- > Environmental effects
- Harmonics

Algorithm

System owners decision process

Candidate technology owners decision

Algorithm

Outline

- Motivation
- Main approach
- Performance matrix as a function of technology choice
- Algorithm
- Illustration of concept
- Conclusion

Illustration of concept

- Distribution system planning
- Motivation: New technologies and customer demand types
- The main idea: Capture the inter-temporal dependence between short-term effect and long-term investments
- Approach: Find the "optimal" technology

Subject to: 1) decisions – driven dynamics

2) natural system dynamics and constraints

Illustration of concept (cont.)

- Different technologies and different scenarios
 - "Classical" approach addition of new lines,
 - "With CDG" approach addition of new lines and controllable distributed generators,
 - "With DLC" approach addition of new lines and direct load control,
 - "With DLC and CDG" approach addition of new lines, direct load control and controllable distributed generators,
 - "With DLC and DG" approach addition of new lines, direct load control and uncontrollable distributed generators that will always produce Pmax.

Illustration of concept (cont.)

Fig 1 - Test network

Fig 2 – "Classical Approach"

Fig 3 – With Controllable
Distributed Generation

Fig 4 – With Direct Load Control

Fig 6 – With Direct Load Control and
Uncontrollable Distributed Generation

Illustration of concept (cont.)

	"Classical"	With CDG	With DLC	With DLC and CDG	With DLC and UDG
Build new line	Yes Line:11 Year:5	Yes Line:11 Year:5	Yes Line:11 Year:5	Yes Line:11 Year:5	Yes Line:11 Year: 1 Line: 8 Year: 1
Replacement	Yes Line:2 Year:6 Line:1 Year:9 Lline:4 Year:10	No	Yes Line:2 Year:8	No	No
Load reduction	No	No	Yes	No	No
Bi-directional power flow	No	Yes	No	Yes	Yes
Performance Matrix	Minimal Costs \$ 4,064,024	Minimal Cost \$ 875,605	Maximal Social Welfare \$ 19,865,187	Maximal Social Welfare \$ 21,857,525	Maximal Social Welfare \$ 18,490,074

Conclusions

- New technologies require new paradigms of planning and operations
- Systematic comparison and evaluation of both old technologies and new candidate technologies is needed
- It is insufficient to invest into technology without accessing its cumulative operational effects

References:

- 1) M. Prica, and M.Ilić, "A New Framework for Evaluating Candidate Technologies for Future Energy Systems," working paper
- 2) M. Prica and M. Ilić, "Optimal Distribution Service Pricing for Investment Planning," *Proceedings of the IEEE General Power Meeting*, Tampa, FL, 2007
- 3) M. Prica and M. Ilić, "Peak-Load Pricing Based Planning for Distribution Networks Under Change," *Proceedings of the IEEE General Power Meeting*, Montreal CA, June 2006
- 4) J.P. Leotard "Transmission Pricing and Incentives for Investments under Uncertainty in the Deregulated Power Industry", Ms thesis, MIT, February 1999.

Thank you!

Questions?

