

Optimal Charge Control of Plug-In Hybrid Electric Vehicles in Deregulated Electricity Markets

Why Bother?

- If no countermeasures are taken, peak load increases by 50% at a 10% fleet penetration of PHEVs.
- Fast charging increases consumer prices unnecessarily and causes tremendous investment requirements for utilities.
- Vehicle to grid support cannot be implemented with fast charging.

Fast vs. Smart

Idea

Use sport market prices to charge vehicles

- Consumers receive a lower price
- Basic benefits of PHEVs can be exploited in the present market structure (ideal charge time allocation)
- Implementation of Vehicle to Grid support is possible with few legislative effort (regulating power)

Assumptions

- Each consumer optimizes his charge curve individually
- No strategic behavior
- Consumers are price takers

Information flow

Inside the Charge Controller

Controller Objective

Find Control Law u(t) that minimizes:

$$J(u) = \varphi(x(t_b)) + \int_{t_a}^{t_b} L(x(t), u(t), t) dt$$

Contraints

$$\dot{x} = f(x(t), u(t), t), \ x(t_a) = x_a$$

Fast Charge Curve

Smart Charge Curve

Smart Grid Support Optimization

Vehicle characteristics

Total distance [mi / km]	44.4 / 71	44.4 / 71
Vehicle Parameters		
Mass [kg]	1200	1300
Total Cost [\$]	13'000	23'300
Drive Train		
IC-Engine power [kW]	100	10
Motor power [kW]	-	80
Generator power [kW]	-	10
Battery		
Total capacity [kWh]	-	4.5
Specific energy density [Wh/kg]	-	100
Maximum plug power [kW]	-	4
Specific cost [\$/Wh]	-	2000
Cylce life [-]	-	7000
Energy Prices		
Gasoline low [\$/gl / \$/l]	2 / 0.53	2 / 0.53
Gasoline high [\$/gl / \$/l]	4 / 1.06	4 / 1.06
Electricity [\$/kwh]	-	0.065
Regulation Up [\$/kw-h]	-	0.012
Regulation Down [\$/kw-h]	-	0.013

Present Value Comparison

Conclusions

- Simple smart charging is profitable (600\$) and succeeds at avoiding super peaks
- Grid support is highly profitable and changes the economics of PHEVs (4200\$) making them competitive to conventional vehicles even at 2\$/gal
- Physical models to estimate battery wear must be developed and integrated into the algorithm

