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Introduction

 Today we will begin our discussion of the family of algorithms
known as “Fast Fourier Transforms”, which have
revolutionized digital signal processing

 What is the FFT?
– A collection of “tricks” that exploit the symmetry of the DFT calculation

to make its execution much faster

– Speedup increases with DFT size

 Today - will outline the basic workings of the simplest
formulation, the radix-2 decimation-in-time algorithm

 Thursday - will discuss some of the variations and extensions
– Alternate structures

– Non-radix 2 formulations
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Introduction, continued

 Some dates:
– ~1880 - algorithm first described by Gauss

– 1965 - algorithm rediscovered (not for the first time) by Cooley and
Tukey

 In 1967 (spring of my freshman year), calculation of a 8192-
point DFT on the top-of-the line IBM 7094 took ….
– ~30 minutes using conventional techniques

– ~5 seconds using FFTs
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Measures of computational efficiency

 Could consider
– Number of additions

– Number of multiplications

– Amount of memory required

– Scalability and regularity

 For the present discussion we’ll focus most on number of
multiplications as a measure of computational complexity
– More costly than additions for fixed-point processors

– Same cost as additions for floating-point processors, but number of
operations is comparable
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Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response ….

 Direct convolution:

– Number of multiplies ≈ MN
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Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response ….

 Using transforms directly:

– Computation of N-point DFTs requires         multiplys

– Each convolution requires three DFTs of length N+M-1 plus an
additional N+M-1 complex multiplys or

– For                , for example,  the computation is



Carnegie
Mellon        Slide 7     ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response ….

 Using overlap-add with sections of length L:
– N/L sections, 2 DFTs per section of size L+M-1, plus additional multiplys

for the DFT coefficients, plus one more DFT for

– For very large N, still is proportional to
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The Cooley-Tukey decimation-in-time algorithm

 Consider the DFT algorithm for an integer power of 2,

 Create separate sums for even and odd values of n:

 Letting              for n even and                  for n odd, we obtain
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The Cooley-Tukey decimation in time algorithm

 Splitting indices in time, we have obtained

 But                                                                 and

So …

                  N/2-point DFT of x[2r]      N/2-point DFT of x[2r+1]
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Savings so far …

 We have split the DFT computation into two halves:

 Have we gained anything?  Consider the nominal number of
multiplications for
– Original form produces                 multiplications

– New form produces                            multiplications

– So we’re already ahead ….. Let’s keep going!!
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Signal flowgraph notation

 In generalizing this formulation, it is most convenient to adopt
a graphic approach …

 Signal flowgraph notation describes the three basic DSP
operations:
– Addition

– Multiplication by a constant

– Delay

x[n]

y[n]
x[n]+y[n]

x[n]
a

ax[n]

x[n] x[n-1]
z-1

Carnegie
Mellon        Slide 12     ECE Department

Signal flowgraph representation of 8-point DFT

 Recall that the DFT is now of the form

 The DFT in (partial) flowgraph notation:
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Continuing with the decomposition …

 So why not break up into additional DFTs?  Let’s take the
upper 4-point DFT and break it up into two 2-point DFTs:
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The complete decomposition into 2-point DFTs
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Now let’s take a closer look at the 2-point DFT

 The expression for the 2-point DFT is:

 Evaluating for              we obtain

which in signal flowgraph notation looks like ...

This topology is referred to as the
basic butterfly
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The complete 8-point decimation-in-time FFT
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Number of multiplys for N-point FFTs

 Let

 (log2(N) columns)(N/2 butterflys/column)(2 mults/butterfly)

      or  ~                   multiplys
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 “Slow” DFT requires N mults; FFT requires N log2(N) mults

 Filtering using FFTs requires 3(N log2(N))+2N mults

 Let

N α1 α2

16 .25 .8124

32 .156 .50

64 .0935 .297

128 .055 .171

256 .031 .097

1024 .0097 .0302

Comparing processing with and without FFTs

Note: 1024-point FFTs 
accomplish speedups of 100
for filtering, 30 for DFTs!
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Additional timesavers: reducing multiplications
in the basic butterfly

 As we derived it, the basic butterfly is of the form

 Since                       we can reducing computation by 2 by
premultiplying by
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Consider the binary representation of the
indices of the input:

0 000
4 100
2 010
6 110
1 001
5 101
3 011
7 111

Bit reversal of the input

 Recall the first stages of the 8-point FFT:

If these binary indices are 
time reversed, we get the 
binary sequence representing
          0,1,2,3,4,5,6,7

Hence the indices of the FFT
inputs are said to be in 
bit-reversed order
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Some comments on bit reversal

 In the implementation of the FFT that we discussed, the input
is bit reversed and the output is developed in natural order

 Some other implementations of the FFT have the input in
natural order and the output bit reversed (to be described
Thursday)

 In some situations it is convenient to implement filtering
applications by
– Use FFTs with input in natural order, output in bit-reversed order

– Multiply frequency coefficients together (in bit-reversed order)

– Use inverse FFTs with input in bit-reversed order, output in natural order

 Computing in this fashion means we never have to compute bit
reversal explicitly

Carnegie
Mellon        Slide 22     ECE Department

Summary

 We developed the structure of the basic decimation-in-time
FFT

 Use of the FFT algorithm reduces the number of multiplys
required to perform the DFT by a factor of more than 100 for
1024-point DFTs, with the advantage increasing with
increasing DFT size

 Next time we will consider inverse FFTs, alternate forms of the
FFT, and FFTs for values of DFT sizes that are not an integer
power of 2


