
18-791 Lecture #17
INTRODUCTION TO THE

FAST FOURIER TRANSFORM ALGORITHM

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Phone: +1 (412) 268-2535
FAX: +1 (412) 268-3890

rms@cs.cmu.edu
http://www.ece.cmu.edu/~rms

October 24, 2005

Richard M. Stern

Carnegie
Mellon Slide 2 ECE Department

Introduction

 Today we will begin our discussion of the family of algorithms
known as “Fast Fourier Transforms”, which have
revolutionized digital signal processing

 What is the FFT?
– A collection of “tricks” that exploit the symmetry of the DFT calculation

to make its execution much faster

– Speedup increases with DFT size

 Today - will outline the basic workings of the simplest
formulation, the radix-2 decimation-in-time algorithm

 Thursday - will discuss some of the variations and extensions
– Alternate structures

– Non-radix 2 formulations

Carnegie
Mellon Slide 3 ECE Department

Introduction, continued

 Some dates:
– ~1880 - algorithm first described by Gauss

– 1965 - algorithm rediscovered (not for the first time) by Cooley and
Tukey

 In 1967 (spring of my freshman year), calculation of a 8192-
point DFT on the top-of-the line IBM 7094 took ….
– ~30 minutes using conventional techniques

– ~5 seconds using FFTs

Carnegie
Mellon Slide 4 ECE Department

Measures of computational efficiency

 Could consider
– Number of additions

– Number of multiplications

– Amount of memory required

– Scalability and regularity

 For the present discussion we’ll focus most on number of
multiplications as a measure of computational complexity
– More costly than additions for fixed-point processors

– Same cost as additions for floating-point processors, but number of
operations is comparable

Carnegie
Mellon Slide 5 ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response ….

 Direct convolution:

– Number of multiplies ≈ MN

Carnegie
Mellon Slide 6 ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response ….

 Using transforms directly:

– Computation of N-point DFTs requires multiplys

– Each convolution requires three DFTs of length N+M-1 plus an
additional N+M-1 complex multiplys or

– For , for example, the computation is

Carnegie
Mellon Slide 7 ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response ….

 Using overlap-add with sections of length L:
– N/L sections, 2 DFTs per section of size L+M-1, plus additional multiplys

for the DFT coefficients, plus one more DFT for

– For very large N, still is proportional to

Carnegie
Mellon Slide 8 ECE Department

The Cooley-Tukey decimation-in-time algorithm

 Consider the DFT algorithm for an integer power of 2,

 Create separate sums for even and odd values of n:

 Letting for n even and for n odd, we obtain

Carnegie
Mellon Slide 9 ECE Department

The Cooley-Tukey decimation in time algorithm

 Splitting indices in time, we have obtained

 But and

So …

 N/2-point DFT of x[2r] N/2-point DFT of x[2r+1]

Carnegie
Mellon Slide 10 ECE Department

Savings so far …

 We have split the DFT computation into two halves:

 Have we gained anything? Consider the nominal number of
multiplications for
– Original form produces multiplications

– New form produces multiplications

– So we’re already ahead ….. Let’s keep going!!

Carnegie
Mellon Slide 11 ECE Department

Signal flowgraph notation

 In generalizing this formulation, it is most convenient to adopt
a graphic approach …

 Signal flowgraph notation describes the three basic DSP
operations:
– Addition

– Multiplication by a constant

– Delay

x[n]

y[n]
x[n]+y[n]

x[n]
a

ax[n]

x[n] x[n-1]
z-1

Carnegie
Mellon Slide 12 ECE Department

Signal flowgraph representation of 8-point DFT

 Recall that the DFT is now of the form

 The DFT in (partial) flowgraph notation:

Carnegie
Mellon Slide 13 ECE Department

Continuing with the decomposition …

 So why not break up into additional DFTs? Let’s take the
upper 4-point DFT and break it up into two 2-point DFTs:

Carnegie
Mellon Slide 14 ECE Department

The complete decomposition into 2-point DFTs

Carnegie
Mellon Slide 15 ECE Department

Now let’s take a closer look at the 2-point DFT

 The expression for the 2-point DFT is:

 Evaluating for we obtain

which in signal flowgraph notation looks like ...

This topology is referred to as the
basic butterfly

Carnegie
Mellon Slide 16 ECE Department

The complete 8-point decimation-in-time FFT

Carnegie
Mellon Slide 17 ECE Department

Number of multiplys for N-point FFTs

 Let

 (log2(N) columns)(N/2 butterflys/column)(2 mults/butterfly)

 or ~ multiplys

Carnegie
Mellon Slide 18 ECE Department

 “Slow” DFT requires N mults; FFT requires N log2(N) mults

 Filtering using FFTs requires 3(N log2(N))+2N mults

 Let

N α1 α2

16 .25 .8124

32 .156 .50

64 .0935 .297

128 .055 .171

256 .031 .097

1024 .0097 .0302

Comparing processing with and without FFTs

Note: 1024-point FFTs
accomplish speedups of 100
for filtering, 30 for DFTs!

Carnegie
Mellon Slide 19 ECE Department

Additional timesavers: reducing multiplications
in the basic butterfly

 As we derived it, the basic butterfly is of the form

 Since we can reducing computation by 2 by
premultiplying by

Carnegie
Mellon Slide 20 ECE Department

Consider the binary representation of the
indices of the input:

0 000
4 100
2 010
6 110
1 001
5 101
3 011
7 111

Bit reversal of the input

 Recall the first stages of the 8-point FFT:

If these binary indices are
time reversed, we get the
binary sequence representing
 0,1,2,3,4,5,6,7

Hence the indices of the FFT
inputs are said to be in
bit-reversed order

Carnegie
Mellon Slide 21 ECE Department

Some comments on bit reversal

 In the implementation of the FFT that we discussed, the input
is bit reversed and the output is developed in natural order

 Some other implementations of the FFT have the input in
natural order and the output bit reversed (to be described
Thursday)

 In some situations it is convenient to implement filtering
applications by
– Use FFTs with input in natural order, output in bit-reversed order

– Multiply frequency coefficients together (in bit-reversed order)

– Use inverse FFTs with input in bit-reversed order, output in natural order

 Computing in this fashion means we never have to compute bit
reversal explicitly

Carnegie
Mellon Slide 22 ECE Department

Summary

 We developed the structure of the basic decimation-in-time
FFT

 Use of the FFT algorithm reduces the number of multiplys
required to perform the DFT by a factor of more than 100 for
1024-point DFTs, with the advantage increasing with
increasing DFT size

 Next time we will consider inverse FFTs, alternate forms of the
FFT, and FFTs for values of DFT sizes that are not an integer
power of 2

