
18-791 Lecture #17
INTRODUCTION TO THE

FAST FOURIER TRANSFORM ALGORITHM

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Phone: +1 (412) 268-2535
FAX: +1 (412) 268-3890

rms@cs.cmu.edu
http://www.ece.cmu.edu/~rms

October 24, 2005

Richard M. Stern

Carnegie
Mellon        Slide 2     ECE Department

Introduction

 Today we will begin our discussion of the family of algorithms
known as “Fast Fourier Transforms”, which have
revolutionized digital signal processing

 What is the FFT?
– A collection of “tricks” that exploit the symmetry of the DFT calculation

to make its execution much faster

– Speedup increases with DFT size

 Today - will outline the basic workings of the simplest
formulation, the radix-2 decimation-in-time algorithm

 Thursday - will discuss some of the variations and extensions
– Alternate structures

– Non-radix 2 formulations



Carnegie
Mellon        Slide 3     ECE Department

Introduction, continued

 Some dates:
– ~1880 - algorithm first described by Gauss

– 1965 - algorithm rediscovered (not for the first time) by Cooley and
Tukey

 In 1967 (spring of my freshman year), calculation of a 8192-
point DFT on the top-of-the line IBM 7094 took ….
– ~30 minutes using conventional techniques

– ~5 seconds using FFTs

Carnegie
Mellon        Slide 4     ECE Department

Measures of computational efficiency

 Could consider
– Number of additions

– Number of multiplications

– Amount of memory required

– Scalability and regularity

 For the present discussion we’ll focus most on number of
multiplications as a measure of computational complexity
– More costly than additions for fixed-point processors

– Same cost as additions for floating-point processors, but number of
operations is comparable



Carnegie
Mellon        Slide 5     ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response ….

 Direct convolution:

– Number of multiplies ≈ MN

Carnegie
Mellon        Slide 6     ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response ….

 Using transforms directly:

– Computation of N-point DFTs requires         multiplys

– Each convolution requires three DFTs of length N+M-1 plus an
additional N+M-1 complex multiplys or

– For                , for example,  the computation is



Carnegie
Mellon        Slide 7     ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response ….

 Using overlap-add with sections of length L:
– N/L sections, 2 DFTs per section of size L+M-1, plus additional multiplys

for the DFT coefficients, plus one more DFT for

– For very large N, still is proportional to

Carnegie
Mellon        Slide 8     ECE Department

The Cooley-Tukey decimation-in-time algorithm

 Consider the DFT algorithm for an integer power of 2,

 Create separate sums for even and odd values of n:

 Letting              for n even and                  for n odd, we obtain



Carnegie
Mellon        Slide 9     ECE Department

The Cooley-Tukey decimation in time algorithm

 Splitting indices in time, we have obtained

 But                                                                 and

So …

                  N/2-point DFT of x[2r]      N/2-point DFT of x[2r+1]

Carnegie
Mellon        Slide 10     ECE Department

Savings so far …

 We have split the DFT computation into two halves:

 Have we gained anything?  Consider the nominal number of
multiplications for
– Original form produces                 multiplications

– New form produces                            multiplications

– So we’re already ahead ….. Let’s keep going!!



Carnegie
Mellon        Slide 11     ECE Department

Signal flowgraph notation

 In generalizing this formulation, it is most convenient to adopt
a graphic approach …

 Signal flowgraph notation describes the three basic DSP
operations:
– Addition

– Multiplication by a constant

– Delay

x[n]

y[n]
x[n]+y[n]

x[n]
a

ax[n]

x[n] x[n-1]
z-1

Carnegie
Mellon        Slide 12     ECE Department

Signal flowgraph representation of 8-point DFT

 Recall that the DFT is now of the form

 The DFT in (partial) flowgraph notation:



Carnegie
Mellon        Slide 13     ECE Department

Continuing with the decomposition …

 So why not break up into additional DFTs?  Let’s take the
upper 4-point DFT and break it up into two 2-point DFTs:

Carnegie
Mellon        Slide 14     ECE Department

The complete decomposition into 2-point DFTs



Carnegie
Mellon        Slide 15     ECE Department

Now let’s take a closer look at the 2-point DFT

 The expression for the 2-point DFT is:

 Evaluating for              we obtain

which in signal flowgraph notation looks like ...

This topology is referred to as the
basic butterfly

Carnegie
Mellon        Slide 16     ECE Department

The complete 8-point decimation-in-time FFT



Carnegie
Mellon        Slide 17     ECE Department

Number of multiplys for N-point FFTs

 Let

 (log2(N) columns)(N/2 butterflys/column)(2 mults/butterfly)

      or  ~                   multiplys

Carnegie
Mellon        Slide 18     ECE Department

 “Slow” DFT requires N mults; FFT requires N log2(N) mults

 Filtering using FFTs requires 3(N log2(N))+2N mults

 Let

N α1 α2

16 .25 .8124

32 .156 .50

64 .0935 .297

128 .055 .171

256 .031 .097

1024 .0097 .0302

Comparing processing with and without FFTs

Note: 1024-point FFTs 
accomplish speedups of 100
for filtering, 30 for DFTs!



Carnegie
Mellon        Slide 19     ECE Department

Additional timesavers: reducing multiplications
in the basic butterfly

 As we derived it, the basic butterfly is of the form

 Since                       we can reducing computation by 2 by
premultiplying by

Carnegie
Mellon        Slide 20     ECE Department

Consider the binary representation of the
indices of the input:

0 000
4 100
2 010
6 110
1 001
5 101
3 011
7 111

Bit reversal of the input

 Recall the first stages of the 8-point FFT:

If these binary indices are 
time reversed, we get the 
binary sequence representing
          0,1,2,3,4,5,6,7

Hence the indices of the FFT
inputs are said to be in 
bit-reversed order



Carnegie
Mellon        Slide 21     ECE Department

Some comments on bit reversal

 In the implementation of the FFT that we discussed, the input
is bit reversed and the output is developed in natural order

 Some other implementations of the FFT have the input in
natural order and the output bit reversed (to be described
Thursday)

 In some situations it is convenient to implement filtering
applications by
– Use FFTs with input in natural order, output in bit-reversed order

– Multiply frequency coefficients together (in bit-reversed order)

– Use inverse FFTs with input in bit-reversed order, output in natural order

 Computing in this fashion means we never have to compute bit
reversal explicitly

Carnegie
Mellon        Slide 22     ECE Department

Summary

 We developed the structure of the basic decimation-in-time
FFT

 Use of the FFT algorithm reduces the number of multiplys
required to perform the DFT by a factor of more than 100 for
1024-point DFTs, with the advantage increasing with
increasing DFT size

 Next time we will consider inverse FFTs, alternate forms of the
FFT, and FFTs for values of DFT sizes that are not an integer
power of 2


