18-791 Lecture \#17 INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM

Richard M. Stern
Department of Electrical and Computer Engineering Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
Phone: +1 (412) 268-2535
FAX: +1 (412) 268-3890
rms@cs.cmu.edu
http://www.ece.cmu.edu/~rms
October 24, 2005

Introduction

- Today we will begin our discussion of the family of algorithms known as "Fast Fourier Transforms", which have revolutionized digital signal processing
- What is the FFT?
- A collection of "tricks" that exploit the symmetry of the DFT calculation to make its execution much faster
- Speedup increases with DFT size
- Today - will outline the basic workings of the simplest formulation, the radix-2 decimation-in-time algorithm
- Thursday - will discuss some of the variations and extensions
- Alternate structures
- Non-radix 2 formulations

Introduction, continued

Some dates:

- ~1880 - algorithm first described by Gauss
- 1965 - algorithm rediscovered (not for the first time) by Cooley and Tukey
- In 1967 (spring of my freshman year), calculation of a 8192point DFT on the top-of-the line IBM 7094 took
- ~ 30 minutes using conventional techniques
- ~ 5 seconds using FFTs

Slide 3

Measures of computational efficiency

- Could consider
- Number of additions
- Number of multiplications
- Amount of memory required
- Scalability and regularity
- For the present discussion we'll focus most on number of multiplications as a measure of computational complexity
- More costly than additions for fixed-point processors
- Same cost as additions for floating-point processors, but number of operations is comparable

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample response

- Direct convolution:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

- Number of multiplies $\approx M N$

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample response

■ Using transforms directly:

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}
$$

- Computation of N-point DFTs requires N^{2} multiplys
- Each convolution requires three DFTs of length $N+M-1$ plus an additional $N+M-1$ complex multiplys or

$$
3(N+M-1)^{2}+(N+M-1)
$$

- For $N \gg M$, for example, the computation is $O\left(N^{2}\right)$

Slide 6
ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample response
■ Using overlap-add with sections of length L :

- N/L sections, 2 DFTs per section of size $L+M-1$, plus additional multiplys for the DFT coefficients, plus one more DFT for $h[n]$

$$
\frac{2 N}{L}(L+M-1)^{2}+\left(\frac{N}{L}\right)(L+M-1)+(L+M-1)^{2}
$$

- For very large N, still is proportional to M^{2}

Slide 7
ECE Department

The Cooley-Tukey decimation-in-time algorithm

- Consider the DFT algorithm for an integer power of $2, N=2^{v}$

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{n k}=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi n k / N} ; W_{N}=e^{-j 2 \pi / N}
$$

- Create separate sums for even and odd values of \boldsymbol{n} :

$$
X[k]=\sum_{n \text { even }}^{\sum_{n} x[n] W_{N}^{n k}+\sum_{n \text { odd }} x[n] W_{N}^{n k}}
$$

■ Letting $n=2 r$ for \boldsymbol{n} even and $n=2 r+1$ for \boldsymbol{n} odd, we obtain

$$
X[k]=\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N} 2 r k+\sum_{r=0}^{(N / 2)-1} x[2 r+1] W_{N}^{(2 r+1) k}
$$

The Cooley-Tukey decimation in time algorithm

- Splitting indices in time, we have obtained

$$
X[k]=\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N} 2 r k+\sum_{r=0}^{(N / 2)-1} x[2 r+1] W_{N}^{(2 r+1) k}
$$

But $W_{N}^{2}=e^{-j 2 \pi 2 / N}=e^{-j 2 \pi /(N / 2)}=W_{N / 2}$ and $W_{N}^{2 r k} W_{N}^{k}=W_{N}^{k} W_{N / 2}^{r k}$
So ...

$$
X[k]=\sum_{n=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k}+W_{N}^{k} \sum_{n=0}^{(N / 2)-1} x[2 r+1] W_{N / 2}^{r k}
$$

$N / 2-$ point DFT of $x[2 r] \quad N / 2-$ point DFT of $x[2 r+1]$

Savings so far ...

- We have split the DFT computation into two halves:

$$
\begin{aligned}
X[k] & =\sum_{k=0}^{N-1} x[n] W_{N} n k \\
& =\sum_{n=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k}+W_{N}^{k} \sum_{n=0}^{(N / 2)-1} x[2 r+1] W_{N / 2}^{r k}
\end{aligned}
$$

- Have we gained anything? Consider the nominal number of multiplications for $N=8$
- Original form produces $8^{2}=64$ multiplications
- New form produces $2\left(4^{2}\right)+8=40$ multiplications
- So we're already ahead Let's keep going!!

Signal flowgraph notation

- In generalizing this formulation, it is most convenient to adopt a graphic approach ...
- Signal flowgraph notation describes the three basic DSP operations:
- Addition

- Multiplication by a constant

- Delay

Slide 11
ECE Department

Signal flowgraph representation of 8-point DFT

■ Recall that the DFT is now of the form $X[k]=G[k]+W_{N}^{k} H[k]$
■ The DFT in (partial) flowgraph notation:

Continuing with the decomposition ...

- So why not break up into additional DFTs? Let's take the upper 4-point DFT and break it up into two 2-point DFTs:

The complete decomposition into 2-point DFTs

Now let's take a closer look at the 2-point DFT

- The expression for the 2-point DFT is:

$$
X[k]=\sum_{n=0}^{1} x[n] W_{2}^{n k}=\sum_{n=0}^{1} x[n] e^{-j 2 \pi n k / 2}
$$

Evaluating for $k=0,1$ we obtain

$$
\begin{aligned}
& X[0]=x[0]+x[1] \\
& X[1]=x[0]+e^{-j 2 \pi 1 / 2} x[1]=x[0]-x[1]
\end{aligned}
$$

which in signal flowgraph notation looks like ...

This topology is referred to as the basic butterfly

The complete 8-point decimation-in-time FFT

Number of multiplys for N -point FFTs

■ Let $N=2^{v}$ where $v=\log _{2}(N)$

- $\log _{2}(N)$ columns)(N/2 butterflys/column)(2 mults/butterfly) or $\sim N \log _{2}(N)$ multiplys

Slide 17
ECE Department

Additional timesavers: reducing multiplications in the basic butterfly

- As we derived it, the basic butterfly is of the form

Since $W_{N}^{N / 2}=-1$ we can reducing computation by 2 by premultiplying by W_{N}^{F}

\qquad
Slide 19
ECE Department

Bit reversal of the input

- Recall the first stages of the 8-point FFT:

Consider the binary representation of the indices of the input:

0000 If these binary indices are 4100 time reversed, we get the 2010 binary sequence representing
6110
1001
5101
Hence the indices of the FFT
inputs are said to be in
3011 bit-reversed order

7111

Some comments on bit reversal

- In the implementation of the FFT that we discussed, the input is bit reversed and the output is developed in natural order
- Some other implementations of the FFT have the input in natural order and the output bit reversed (to be described Thursday)
- In some situations it is convenient to implement filtering applications by
- Use FFTs with input in natural order, output in bit-reversed order
- Multiply frequency coefficients together (in bit-reversed order)
- Use inverse FFTs with input in bit-reversed order, output in natural order
- Computing in this fashion means we never have to compute bit reversal explicitly

Slide 21
ECE Department

Summary

- We developed the structure of the basic decimation-in-time FFT
- Use of the FFT algorithm reduces the number of multiplys required to perform the DFT by a factor of more than 100 for 1024-point DFTs, with the advantage increasing with increasing DFT size
- Next time we will consider inverse FFTs, alternate forms of the FFT, and FFTs for values of DFT sizes that are not an integer power of 2

