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Introduction

 Last week we discussed the discrete-time Fourier transform
(DTFT) at length

 This week we will begin our discussion of the Z-transform (ZT)
– ZT can be thought of as a generalization of the DTFT

– ZT is more complex than DTFT (both literally and figuratively), but
provides a great deal of insight into system design and behavior

 So today we will:
– Define ZTs and their regions of convergence (ROC)

– Provide insight into the relationships between frequency using ZT and
DTFT relationships

– Discuss relations between unit sample response and shape of ROC
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The Discrete-Time Fourier Transform (DTFT)
and the Z-transform (ZT)

 The first equation aserts that we can represent any time
function x[n] by a linear combination of complex exponentials

 The second  equation tells us how to compute the complex
weighting factors

 In going from the DTFT to the ZT we replace         by
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Generalizing the frequency variable

 In going from the DTFT to the ZT we replace         by

    can be thought of as a generalization of

 For an arbitrary z, using polar notation we obtain                so

 If both ρ and ω are real, then       can be thought of as a
complex exponential (i.e. sines and cosines) with a real
temporal envelope that can be either exponentially decaying
or expanding
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Definition of the Z-transform

 Recall that the DTFT is

 Since we are replacing (generalizing) the complex exponential
building blocks           by      , a reasonable extension of

      would be

 Again, think of this as building up the time function by a
weighted sums of functions      instead of
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Computing the Z-transform: an example

 Example 1: Consider the time function
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Another example …

 Example 2: Now consider the time function

 Let

 Then,
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The importance of the region of convergence

 Did you notice that the Z-transforms were identical for
Examples 1 and 2 even though the time functions were
different?  Yes, indeed, very different time functions can have
the same Z-transform!  What’s missing in this
characterization?  The region of convergence (ROC).

 In Example 1, the sum                            converges only for

 In Example 2, the sum                             converges only for

 So in general, we must specify not only the Z-transform
corresponding to a time function, but its ROC as well.
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What shapes are ROCs for Z-transforms?

 In Example 1, the ROC was                We can represent this
graphically as:
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What shapes are ROCs for Z-transforms?

 In Example 2, the ROC was                We can represent this
graphically as:

(ROC is

shaded

area)
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General form of ROCs

 In general, there are four types of ROCs for Z-transforms, and
they depend on the type of the corresponding time functions

 Four types of time functions:
– Right-sided

– Left-sided

– “Both”-sided (infinite duration)

– Finite duration
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Right-sided time functions

 Right-sided time functions are of the form

(as in Example 1).  ROCs are of the form

 Comment: All causal LSI systems have unit sample responses
that are right-sided, although not all right-sided sample responses
correspond to causal systems.
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Left-sided time functions

 Left-sided time functions are of the form

(as in Example 2).  ROCs are of the form               except that it is

possible that they

don’t include
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“Both”-sided (infinite-duration) time functions

 Right-sided time functions are of the form                for all n

(as in                           ).  ROCs are of the form                  , an
annulus bounded by α and β, exclusive.
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An example of a “both-sided” time function

 Consider the function                                     with

 Using the results of Examples 1 and 2, we note that

 The ROC is                   , which is the region of “overlap” of the
ROCs of the z-transforms of the two terms of the time function
taken individually.
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Finite-duration time functions

 Finite-duration time functions are of the form

ROCs include the entire z-plane except possibly
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Stability and the ROC

 It can be shown that an LSI system is stable if  the ROC
includes the unit circle (UC), which is the locus of points for
which

 Comment: this is exactly the same condition that is required
for the DTFT               to exist
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Causality, stability and the ROC

 Recall that for a  system to be causal the sample response
must be right-sided, and the ROC must be the outside of some
circle.

 Hence, for a system to be both causal and stable, the ROC
must be the outside of a circle that is inside the UC.

 In other words, if an LSI system is both causal and stable, the
ROC will be of the form           with
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The inverse Z-transform

 Did you notice that we didn’t talk about inverse z-transforms
yet?

 It can be shown (see the text) that the inverse z-transform can
be formally expressed as

 Comments:

– Unlike the DTFT, this integral is over a complex variable, z and we
need complex residue calculus to evaluate it formally

– The contour of integration, c, is a circle around the origin that lies inside
the ROC

– We will never need to actually evaluate this integral in this course …
we’ll discuss workaround techniques in the next class
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Comparing the Z-transform with the LaPlace
transform

Z-transforms:
 The Z-transform uses

                                             as the
basic building block

 The DTFT exists if the ROC of
the Z-transform includes the
unit circle

 The DTFT equals the Z-
transform evaluated along the
unit circle,

 Causal and stable LSI systems
have ROCs that are the outside
of some circle that is to the
inside of the unit circle

LaPlace transforms:
 The LaPlace transform uses
                                                 as the

basic building block
 The CTFT exists of the ROC of

the LaPlace transform includes
the jΩ-axis,

 The CTFT equals the LaPlace
transform evaluated along the
jΩ-axis,

 Causal and stable LTI systems
have ROCs that are right-half
planes bounded by a vertical
line to the left of the jΩ-axis
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Mapping the s-plane to the z-plane

 Map (i.e. warp conformally) the s-plane into the z-plane:

 Comments:
– jΩ-axis in s-plane maps to unit circle in z-plane

– Right half of s-plane maps to outside of z-plane

– Left half of z-plane maps to inside of s-plane
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Summary - Intro to the z-transform

 The z-transform is based on a generalization of the frequency
representation used for the DTFT

 Different time functions may have the same z-transforms; the
ROC is needed as well

 The ROC is bounded by one or more circles in the z-plane
centered at its origin

 The shape of the ROC depends on whether the time function
is right-sided, left-sided, infinite in duration, or finite duration

 An LSI system is stable if the ROC includes the unit circle

 The inverse z-transform can only be evaluated using complex
contour integration

 The z-plane can be considered (in some ways) as a conformal
mapping of the s-plane


