18-791 Lecture \#8 INTRODUCTION TO THE Z-TRANSFORM

Richard M. Stern

Department of Electrical and Computer Engineering Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
Phone: +1 (412) 268-2535
FAX: +1 (412) 268-3890
rms@cs.cmu.edu
http://www.ece.cmu.edu/~rms
September 22, 2005

Introduction

■ Last week we discussed the discrete-time Fourier transform (DTFT) at length

- This week we will begin our discussion of the Z-transform (ZT)
- ZT can be thought of as a generalization of the DTFT
- ZT is more complex than DTFT (both literally and figuratively), but provides a great deal of insight into system design and behavior
- So today we will:
- Define ZTs and their regions of convergence (ROC)
- Provide insight into the relationships between frequency using ZT and DTFT relationships
- Discuss relations between unit sample response and shape of ROC

The Discrete-Time Fourier Transform (DTFT) and the Z-transform (ZT)

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega} d \omega \quad X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega}
$$

- The first equation aserts that we can represent any time function $x[n]$ by a linear combination of complex exponentials

$$
e^{j \omega n}=\cos (\omega n)+j \sin (\omega n)
$$

- The second equation tells us how to compute the complex weighting factors $X\left(e^{j \omega}\right)$
- In going from the DTFT to the ZT we replace $e^{j \omega n}$ by z^{n}

Generalizing the frequency variable

■ In going from the DTFT to the ZT we replace $e^{j \omega n}$ by z^{n}

- z^{n} can be thought of as a generalization of $e^{j \omega n}$

■ For an arbitrary z, using polar notation we obtain $z=\rho e^{j \omega}$ so

$$
z^{n}=\rho^{n} e^{j \omega n}
$$

■ If both ρ and ω are real, then z^{n} can be thought of as a complex exponential (i.e. sines and cosines) with a real temporal envelope that can be either exponentially decaying or expanding

Definition of the Z-transform

Recall that the DTFT is

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega}
$$

- Since we are replacing (generalizing) the complex exponential building blocks $e^{j \omega n}$ by z^{n}, a reasonable extension of $X\left(e^{j \omega}\right)$ would be

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

- Again, think of this as building up the time function by a weighted sums of functions z^{n} instead of $e^{j \omega n}$

Slide 5
ECE Department

Another example ...

Example 2: Now consider the time function $x[n]=-\alpha^{n} u[-n-1]$

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=-\infty}^{-1}-\alpha^{n} z^{-n}=\sum_{n=-\infty}^{-1}\left(\alpha z^{-1}\right)^{n}
$$

- Let $l=-n ; n=-\infty \Rightarrow l=\infty ; n=-1 \Rightarrow l=1$

Then, $\sum_{\substack{\text { ■annegie } \\ \text { Callon }}}^{\sum_{n=-\infty}^{-1}\left(\alpha z^{-1}\right)^{n}=\sum_{l=1}^{\infty}-\left(z \alpha^{-1}\right)^{l}=1-\sum_{l=0}^{\infty}\left(z \alpha^{-1}\right)^{l}=1-\frac{1}{1-z \alpha^{-1}}=\frac{1}{1-\alpha z^{-1}}}$ Slide 7 ECE Department

The importance of the region of convergence

- Did you notice that the Z-transforms were identical for

Examples 1 and 2 even though the time functions were different? Yes, indeed, very different time functions can have the same Z-transform! What's missing in this characterization? The region of convergence (ROC).

- In Example 1, the sum $X(z)=\sum_{n=0}^{\infty} \alpha^{n} z^{-n}$ converges only for $|z|>|\alpha|$

■ In Example 2, the sum $X(z)=\sum_{n=-\infty}^{-1} \alpha^{n} z^{-n}$ converges only for $|\alpha|>|z|$

- So in general, we must specify not only the Z-transform corresponding to a time function, but its ROC as well.

What shapes are ROCs for Z-transforms?

■ In Example 2, the ROC was $|z|<|\alpha|$ We can represent this graphically as:
(ROC is
shaded
area)

General form of ROCs

■ In general, there are four types of ROCs for Z-transforms, and they depend on the type of the corresponding time functions

- Four types of time functions:
- Right-sided
- Left-sided
- "Both"-sided (infinite duration)
- Finite duration

Right-sided time functions

Right-sided time functions are of the form $x[n]=0, n<n_{0}$
(as in Example 1). ROCs are of the form $|\alpha|<|z|$

■ Comment: All causal LSI systems have unit sample responses that are right-sided, although not all right-sided sample responses correspond to causal systems.

"Both"-sided (infinite-duration) time functions

Right-sided time functions are of the form $x[n] \neq 0$ for all n (as in $x[n]=\alpha^{|n|},|\alpha|<1$). ROCs are of the form $|\alpha|<|z|<|\beta|$, an annulus bounded by α and β, exclusive.

An example of a "both-sided" time function

■ Consider the function $\alpha^{n} u[n]-\beta^{n} u[-n-1]$ with $|\alpha|<|\beta|$

■ Using the results of Examples 1 and 2, we note that

$$
X(z)=\frac{-1}{1-\beta z^{-1}}-\frac{1}{1-\alpha z^{-1}}=\frac{z(\alpha-\beta)}{(z-\alpha)(z-\alpha)}
$$

The ROC is $|\alpha|<z<|\beta|$, which is the region of "overlap" of the ROCs of the z-transforms of the two terms of the time function taken individually.

Finite-duration time functions

Finite-duration time functions are of the form $x[n] \neq 0, n_{1}<n<n_{2}$
ROCs include the entire z-plane except possibly $z=0$

Stability and the ROC

- It can be shown that an LSI system is stable if the ROC includes the unit circle (UC), which is the locus of points for which $|z|=1$

■ Comment: this is exactly the same condition that is required for the DTFT $X\left(e^{j \omega}\right)$ to exist

Causality, stability and the ROC

- Recall that for a system to be causal the sample response must be right-sided, and the ROC must be the outside of some circle.
- Hence, for a system to be both causal and stable, the ROC must be the outside of a circle that is inside the UC.

In other words, if an LSI system is both causal and stable, the ROC will be of the form $|z|>\alpha$ with $|\alpha|<1$

The inverse Z-transform

Did you notice that we didn't talk about inverse z-transforms yet?

- It can be shown (see the text) that the inverse z-transform can be formally expressed as

Comments:

$$
x[n]=\frac{1}{2 \pi j} \oint_{c} X(z) z^{n-1} d z
$$

- Unlike the DTFT, this integral is over a complex variable, z and we need complex residue calculus to evaluate it formally
- The contour of integration, c, is a circle around the origin that lies inside the ROC
- We will never need to actually evaluate this integral in this course ... we'll discuss workaround techniques in the next class

Slide 19

Comparing the Z-transform with the LaPlace transform

Z-transforms:

- The Z-transform uses
$z^{n}=\rho e^{j \omega n}=\rho^{n} e^{j \omega n}$ as the basic building block
- The DTFT exists if the ROC of the Z-transform includes the unit circle
- The DTFT equals the \mathbf{Z} transform evaluated along the unit circle, $z=e^{j \omega}$
- Causal and stable LSI systems have ROCs that are the outside of some circle that is to the inside of the unit circle

LaPlace transforms:

- The LaPlace transform uses
$e^{s t}=e^{(\sigma+j \Omega) t}=e^{\sigma t} e^{j \Omega t}$ as the basic building block
- The CTFT exists of the ROC of the LaPlace transform includes the $\mathrm{j} \Omega$-axis, $s=j \Omega$
- The CTFT equals the LaPlace transform evaluated along the $\mathrm{j} \Omega$-axis,
- Causal and stable LTI systems have ROCs that are right-half planes bounded by a vertical line to the left of the $\mathrm{j} \Omega$-axis

Mapping the s-plane to the z-plane

Map (i.e. warp conformally) the s-plane into the z-plane:

Comments:

- j Ω-axis in s-plane maps to unit circle in z-plane
- Right half of s-plane maps to outside of z-plane
- Left half of z-plane maps to inside of s-plane

Summary - Intro to the z-transform

■ The z-transform is based on a generalization of the frequency representation used for the DTFT
■ Different time functions may have the same z-transforms; the ROC is needed as well

- The ROC is bounded by one or more circles in the z-plane centered at its origin
- The shape of the ROC depends on whether the time function is right-sided, left-sided, infinite in duration, or finite duration
- An LSI system is stable if the ROC includes the unit circle
- The inverse z-transform can only be evaluated using complex contour integration
The z-plane can be considered (in some ways) as a conformal nomapping of the s-plane

