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(Lec 17) Timing Analysis at the Logic Level(Lec 17) Timing Analysis at the Logic Level

What you know
A lot of logic synthesis: going from a spec to a gate-level design

How to simulate a design to verify what it does

What you don’t know
Verifying timing behavior of some synthesized object

Important example:  Static Timing Analysis

I give you a gate-level netlist

I give you some “timing models” of the gates and maybe wires too

You tell me:
o When signals arrive at various points in the network, or … 

o Longest and shortest delays through gate network, or … 

o Does the netlist meet some timing requirement?

This is surprisingly complicated in the real world...
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Where Are We?Where Are We?

After logic synthesis--how estimate delay of a netlist?
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ReadingsReadings

De Micheli
Chapter 8 on multilevel synthesis has a little bit about this.

Read 8.6 on ‘Algorithms for Delay Evaluation and Optimization’
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Analyzing Design PerformanceAnalyzing Design Performance

Basic question
Does the design meet a given timing requirement, or

How fast can I run the design? 

Assume we know the delays of blocks in the network

Why not just use ordinary gate-level delay simulation …?
Requires too many patterns

Exponential in the number of design inputs

Even worse if we consider sequences needed to initialize latches

So what do we do instead?
Separate function from time

Determine when transitions occur without worrying about how
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Analyzing Design PerformanceAnalyzing Design Performance

Assume design is synchronous
All storage is in explicit latch or flip-flop elements

All cycles cut by clocked storage elements

Combinational
Circuit

(No feedback
loops)L

A
T

C
H

E
S

L
A

T
C

H
E

S

Common
Clock

•
•
•

•
•
•
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Analyzing Design PerformanceAnalyzing Design Performance

Consider an arbitrary signal in a clocked design
Takes on a value every cycle, sometimes one, sometimes zero

Changes occur at different times in each cycle

Specific time of change depends on pattern causing it

May not change at all in some cycles 

May make multiple changes before settling to final value

Clock

Data



Page 5

© R. Rutenbar  2001            CMU 18-760, Fall01   9

Static Timing AnalysisStatic Timing Analysis
Basic idea of static timing analysis

Instead of considering an infinitely long simulation sequence

Fold all possible transitions back into a single clock cycle

Assume that signal becomes stable at latest possible time

Assume signal becomes unstable at the earliest possible time

If the design works at these extremes, we can guarantee it always will

“Static” part just means we aren’t doing simulation (dynamic)
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Static Timing AnalysisStatic Timing Analysis
Look at our data signal again

Clock

Data

Clock

Data
Often consider rising and 
falling times separately

All times considered relative 
to some reference point in the 
clock cycle (e.g., rising edge)
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Timing Analysis: Basic ModelTiming Analysis: Basic Model

So, the basic questions are:
Does data always reach a stable value at all latch inputs in time for the 
clock to capture it?

Determine this by looking at late mode timing, or longest path

Does data always stay stable at all latch inputs long enough after the 
clock to get stored?

Determine this by looking at early mode timing, or shortest path

What do we need to answer this?
First thing we need are “delay models” of the logic network

Surprising variety of options here

Depends on accuracy you need vs. computation you can afford
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Delay ModelsDelay Models

Example gate network
3 primary inputs (PIs) and 1 primary output (PO)

Simplest model:  unit delay
The delay through a gate -- ANY gate -- is equal to  1 time unit.  Period.

Longest path is...
∆ = 1

∆ = 1

2
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Delay ModelsDelay Models

Better model:  Arbitrary but fixed delay per gate
Each gate is allowed to have its own fixed delay

This delay is constant -- doesn’t depend on circuit netlist

Why isn’t this enough?
Unfortunately, real circuits are made from gates made out of 
transistors, and a lot of other circuit effects are present...

∆=3
∆=2 Longest path is...

5
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Delay ModelsDelay Models

The gate “loading” matters for delay
Gates with more fanout are slower than gates with less fanout

Look at the the AND gate on left and right

In real circuit, the loading presented by the connecting wires is actually 
the dominant contribution to the delay.  

Gate’s delay model will usually depend on load of driven wires & gates

Delay through wires can be longer than delays through gates!

∆=  
∆=2

∆=2∆= 
∆=2

3
3.2

Gate output has to electrically drive all 
the fanout gates. More fanout means 

more load ==> slower.
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Delay ModelsDelay Models

The waveforms of the signals actually matter for delay
Rising signal versus falling signal matters.  Delays may be asymmetric

Slope of the waveform seriously affects delay (RC circuit stuff)

∆=3
∆=2

∆=3
1

∆=3

Sharp slope, fast rise

in

out

∆=3
1

∆=3 !

Poor slope, slow rise

in

out
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Delay ModelsDelay Models

Not all pins are created equal
Delay is not really “through” a gate

Delay is from each individual pin to gate output(s);  all can be different

∆=3
∆=2

5 V = logic “1”

0 V = logic “0”

nand(A,B)
A

A

B

B

Why?  Different transistor-level
circuit paths input to output
Simple ex:  NAND

∆=3 ∆=3.2
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Delay ModelsDelay Models

Not all transitions are created equal
Separate transistors are used to drive a gate output to high/low values

Transistors may be different sizes, P & N devices have different
mobilities, and topology of pull-up and pulll-down paths differ

… So delay can be different

More complicated for non-monotonic functions

∆(output falling)=3.1

∆(output rising)=3.5

∆(input falling, output falling)=3.1

∆(input falling, output rising) =3.5

∆(input rising, output falling) =3.6

∆(input rising, output rising)  =3.8
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Delay ModelsDelay Models

Delays may not even be scalars; may be a distribution
Simplest is [min, max] which tries to quantify reasonable extremes on 
the manufacturing process

In most elaborate case, it’s a real probability distribution that gives you 
a real probability of the signal arriving with a given delay...

...and this distribution can still be a function of ALL these factors:  
waveform slope, output loading, different delay per pin, etc.

Messy!  Complicated!

∆=3
∆=2

delay
3

∆ = max delay
δ = min delay
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Timing Analysis:  Topological vs. LogicalTiming Analysis:  Topological vs. Logical

Another problem: Do we worry about gate “function”?
Logical timing analysis:  YES, we care what the gates actually do

Topological timing analysis:  NO, we don’t care what gates do

What’s the difference?  Try an example...
Topological analysis means we only worry about the delay through the 
paths through the graph shown below, not the logical function of the 
modules (which we hide here!)

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

Longest delay is

PI

PI

PI

PO

8+2+8+2 = 20
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Topological vs. Logical Timing AnalysisTopological vs. Logical Timing Analysis

Topological (again)

Logical--we tell what gates are

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

PI

PI

PI

PO

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

PI

PI

PI

PO

2:1 mux 2:1 mux
0

1

0

1

Delay = 20

0

0 0

1
conflict
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False Paths and Path SensitizationFalse Paths and Path Sensitization

Oops.  We got a false path
It is not possible to apply a set of inputs that will cause  a logic signal to 
propagate down this supposed “longest” path from PI to PO

This path we found by topological analysis is called a FALSE PATH

We got this because we didn’t care what the gates did

Sensitization
A path is said to be sensitized when it allows a logic signal to propagate 
along it.  In this example, there is no way to sensitize this path

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

PI

PI

PI

PO

2:1 mux 2:1 mux
0

1

0

1

X

1/0

X
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SensitizationSensitization

Definitions
Controlling value for a gate is a single  input value to a gate that 
uniquely forces the output to a known constant, independent of the 
other inputs to the gate. 

A gate is sensitized so a logic signal can propagate through it from one 
particular input to the output if the other inputs have stable 
noncontrolling values

controlling
value is_____

controlling
value is_____

1
1

0

output output
0 0 1 1
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SensitizationSensitization

Definitions
A path is a set of connected gates and wires that starts with some PI and 
ends with some PO.  Path is defined by 1 input and 1 output per gate

Side inputs on a path are the “other” inputs to these gates on the path.

Combinational 
network

PI

PO

Stuff connected
to the side inputs

Side inputs
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Static SensitizationStatic Sensitization

Static sensitization
A path is statically sensitizable when...

Combinational 
network

PI

PO

Side 
inputs

Stuff connected
to the side inputs

There is an input vector which generates stable
noncontrolling values to all side inputs on the path

Input vector

-
-
-
-

1
0

1
1

1
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Static SensitizationStatic Sensitization

NOT statically sensitizable

Statically sensitizable

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

PI

PI

PI

PO

2:1 mux 2:1 mux
0

1

0

1

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

PI

PI

PI

PO

2:1 mux 2:1 mux
0

1

0

1

X

1/0

X

0
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SensitizationSensitization

How hard is it really to do this?
In general, very hard, though there are many good heuristics

As hard as Boolean satisfiability (find a pattern of inputs to make an 
arbitrary Boolean function == 1), which is NP hard

New example below:  delay = 20 if F==1 else delay = 6 if F==0.

∆=8

∆=1

∆=2

∆=1

∆=8

∆=2

∆=1

PI

PI

PIs

PO

2:1 mux 2:1 mux
0

1

0

1

arbitrary
Boolean
function F
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Aside:  Related to Testing for Gate-Level CircuitsAside:  Related to Testing for Gate-Level Circuits

What’s testing about?
Find inputs to a gate network that force a particular value on a
particular input of a particular gate...

...and that also allow the output of that gate to propagate to some 
output.

Combinational  network

PO

test pattern
input vector

control this value
observe this value by propagating
something to a PO

need to force the right side inputs
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Beyond Static Sensitization...?Beyond Static Sensitization...?

Dynamic sensitization
Try to find vectors to apply at different times so that the right 
noncontrolling value appears at each  side input when the propagating 
signal gets to that particular gate

Messy, hard to do.  

People are still working on various practical simplifications of this.

Combinational 
network

PI

PO

Side 
inputs

Stuff connected
to the side inputs

Combinational 
network

PI

PO

Side 
inputs

Stuff connected
to the side inputs

at time t2 need
a 1 on this AND...

at time t0 need
a 1 on this AND...
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So, What Are We Doing Here?So, What Are We Doing Here?

Simple fixed delay gate model
No slopes, etc.  Any loading effects are “bundled” back into the gate 
delay number itself.

Topological path analysis
We don’t worry about what the gates do

We only look at paths through the connected gates

Aside:  means we assume all paths statically sensitizable.

We know we will get false paths -- too bad.

This is usually a pessimistic timing model -- delay numbers too big since 
we find false paths first that are usually overly long

∆=3.2  ∆=3 
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Topological Path AnalysisTopological Path Analysis

Generally what people mean by static timing analysis

PRO

CON

Fast (pattern independent)
Bounds true worst path delay

Can be pessimistic (includes false paths)
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Representation:  Delay GraphRepresentation:  Delay Graph
How do we model gate network?  Delay Graph

Gates = edges, 1 edge per input pin. 
Numbers on edges = delay through gates 
Wires (signals) = vertices.  1 per gate output

Also 1 for each PI, PO
Leave latches out for now

Predecessor: pred(n) = any node p where there is an edge from p->n
Successor: succ(n) = any node s where there is an edge from n->s
Note:  this ends up as a directed, acyclic graph, a DAG

∆=2 ∆=3

a

b
c

d
e

a

d

c

b

e

2

3

3

2
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Representation:  Delay GraphRepresentation:  Delay Graph
What about interconnect delay?

Can use delay graph with node for each pin instead of each net

Gate and net delays interact - can have delay edge from input to input

We’ll stick with one node per net for simplicity

a
b

c
d

e
x
y

w
z

o

a

d

c

b

e

x

o

w

zy

a

db

x

o

w

zy
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Delay GraphDelay Graph
Source / Sink nodes (pure combinational logic)

Often add 1 “source” node that has a 0-weight edge to each PI

..and 1 “sink” node with 0-weight edge from each PO

Now network has 1 clear “entry” node, and 1 clear “exit” node

Even timers that don’t explicitly add these nodes do something similar

Loop through all PIs (POs) ⇔ loop through fanout (fanin) of source 
(sink) node

∆=2 ∆=3

a

b
c

d
e

a

d

c

b

eSrc Sink

2

2
3

30

0

0

0

Non-zero values on Src/Sink 
edges can be used to represent 
different timing constraints on 
different PIs and POs

Like HLS scheduling graph
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Operations on Delay Graph Operations on Delay Graph 

So how do we use this graph to do timing analysis
Simple approach: path enumeration = list all paths, in some order

Easy to do this in a naive way

OK, it works.  What’s wrong with this?

search (path P, delay d) {
n = last node in P;
if ( there are no successor nodes to n )

Output path P, delay d;    /* All paths end at sink */
else {

foreach (node s in succ(n) ) {
search ( P+s, d+delay(n,s) ); 

}
}

}
search (source);

Add one more node 
to the end of the path 

and recurse
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Path EnumerationPath Enumeration

Problem is number of paths
Can be exponential in length of paths

Our “search” algorithm doesn’t visit paths in any useful order

Some timing analyzers do this anyway

May use pruning methods to control exponential behavior

0 1 2 3 n• • •

How many paths from node 0 to node n in here? 2n
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Operations on Delay Graph Operations on Delay Graph 

Instead we’ll use what’s been called block-oriented analysis
Don’t look for paths to the sink (primary outputs)

Instead find for each node the worst delay to the node along any path

Need to define some terms … 
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Values on Nodes in Delay Graph Values on Nodes in Delay Graph 

Arrival Times at a node (ATs)
ATE(n) = Earliest signal can become unstable at node n

Determined by shortest path from source

ATL(n) = Latest time signal can become stable at node n

Determined by longest path from source 

Sometimes called “delays to node”

src sink

n

other paths

ATs
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Values on Nodes in Delay Graph Values on Nodes in Delay Graph 

Required Arrival Times at a node (RATs)
RATE(n) = Earliest that signal is allowed to become unstable at node n

Determined by shortest path to sink

RATL(n) = Latest time signal is allowed to become stable at node n

Determined by longest path to sink

Related to what is sometimes called “delay from node”

src sink

n

other paths

RATs
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Values on Nodes in Delay Graph Values on Nodes in Delay Graph 

Slacks at a node
SlackE(n) = ATE(n) - RATE(n)

Amount of margin in time signal goes unstable

Determined by shortest path through node

Amount by which a signal can be sped up at a node and not decrease 
the length of the shortest path through the network

SlackL(n) = RATL(n) - ATL(n)

Amount of margin in time signal becomes stable

Determined by longest path through node

Amount by which a signal can be delayed at a node and not increase 
the length of the longest path through the network

Can increase delay at a node (to minimize power, circuit area) with 
positive late mode slack and not degrade overall performance

Defined so negative slack always indicates a timing problem

Measures “sensitivity” of network to this node’s delay
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How To Compute...?How To Compute...?

Recursively.
In terms of (assumed) known values of the desired quantities for either 
the successor or predecessor nodes, as shown above.

Let’s try it...

src sink
n

pred(n)

-

p 

-

-

s

-

succ(n)

•
•
•

•
•
•

predecessor

paths
successor paths

∆(p,n) ∆(n,s)
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Arrival Times for a Node nArrival Times for a Node n

src sink
n

pred(n)

-

p 

-

-

s

-

succ(n)

•
•
•

•
•
•

predecessor

paths
successor paths

∆(p,n) ∆(n,s)

AT E(n) = min delay to n  = 

ATL(n) = max delay to n = 

0 if n == src

Min    {AT E(p) + δ (p,n) }
p = pred(n)

0 if n == src

Max    { ATL(p) +  ∆ (p,n) }
p = pred(n)
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Aside: Quick Concrete ExampleAside: Quick Concrete Example

Big idea
If a particular path to node n has min (max) delay  from source...

...then if we take node n off the end of the path, the shorter partial path 
(to node r, here) is the min (max) delay path from source to node r

This is why the recursion idea works

n

p

q

r

7

1

5

src

• • •

• • •

• • •

AT E =5

AT E =10

AT E =5

AT E =?

AT E(n) =  Min    {AT E(x) + δ (x,n) }
x∈{p, q, r}

= Min( 5+7, 10+1, 5+5)

= 10
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Required Arrival Times for a Node nRequired Arrival Times for a Node n

src sink
n

pred(n)

-

p 

-

-

s

-

succ(n)

•
•
•

•
•
•

predecessor

paths
successor paths

∆(p,n) ∆(n,s)

RATE(n) =

RATL(n) =

0 if n == sink

Max    {RATE(s) - δ(n,s) }
s = succ(n)

Cycle time if n == sink

Min    {RATL(s) - ∆(n,s) }
s = succ(n)

Note reversal of min and max 
for early and late modes; this is 
because we’re subtracting delays 
instead of adding them 

© R. Rutenbar  2001            CMU 18-760, Fall01   44

ExampleExample
B D

F

EC

A

3

5

6

159

11

4

ATE(E) =

ATL(E) = 

RATE(B) =

RATL(B) =

SlackE(B) =

SlackL(B) = 

src sink

4+9          = 13

3+11        = 14

0-6-5       = -11

30-11-15 = 4

3-(-11)    = 14

4-3         = 1

For simplicity, assume 
delays on edges are both 
min and max values

Cycle time = 30 
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Computational StrategyComputational Strategy

OK, we can define them, but can we compute them?
Actually, all pretty easy.

Essential idea:   topological sorting of a DAG
Sorting of the vertices in the DAG into a total linear ordering...

...i.e., a single ordered list of vertices in the DAG

Essential property of sort:  if there is an edge from p->s in the DAG, 
then p comes before s in the sorted order.  True for ALL edges

B D

F

EC

A

3

5

6

159

11

4

Legal Topological Sort 
Orders

A,B,D,C,E,F
A,B,C,D,E,F
A,B,C,E,D,F
A,C,B,D,E,F
A,C,B,E,D,F
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Topological SortingTopological Sorting

Pretty easy application of depth-first-search (DFS) 

topsort( node n ) {
for each s in succ(n) {

if s has not been visited {
topsort( s );
push n on stack ;
mark n as visited;

}
}

}

topsort(SRC);
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Topological SortingTopological Sorting

Apply to our example
B D

F

EC

A

3
5

6

159

11

4

stack

topsort(A)

topsort(B) topsort(C)

topsort(D)

topsort(F)

topsort(E)

A

T
o

po
lo

gi
ca

l o
rd

er

C
B
E
D
F
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Computing ATsComputing ATs

Assume we now have the topological sort order

get_ATs() {
ATE(src) = 0; ATL(src) = 0;
for each n in topsort order {

ATE(n) = ∞; ATL(n) = - ∞;
for each p in pred(n) {

ATE(n) = min( ATE(n), ATE(p) + δ(p,n) );
ATL(n) = max( ATL(n), ATL(p) + ∆(p,n) );

}
}

}

src sink
n

pred(n)

-

p 

-

-

s

-

succ(n)

•
•
•

•
•
•

predecessor

paths
successor paths

∆(p,n) ∆(n,s)

Alternatively, we can  omit 
the topological sort and 
compute ATE and ATL for 
node n on return from 
recursion (when values for 
all pred(n) have been 
computed) during DFS 
backward from n.

This is called demand-driven
computation.
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Computing RATsComputing RATs
Again, assume we have topological sort order

RATs same as the ATs would be if you reversed all arrows and start 
from sink (now=source) and go to source (which is now the sink)!

get_RATs() {
RATE(sink) = 0; RATL(sink) = cycle_time;
for each n in reverse topsort order {

RATE(n) = - ∞; RATL(n) = ∞;
for each s in succ(n) {

RATE(n) = max( RATE(n), RATE(s) - δ(n,s) );
RATL(n) = min( RATL(n), RATL(s) - ∆(n,s) );

}
}

}

SINK SRC
n

pred(n)

-

p 

-

-

s

-

succ(n)

•
•
•

•
•
•

predecessor

paths
successor paths

∆(p,n) ∆(n,s)
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SlackSlack
Interesting slack property

All nodes on a critical (longest) path have same slack
Consider a late mode analysis:

Allow us to report worst paths, even though we didn’t trace them all

B D

F

EC

A

3

5

6

159

11

4

Cycle time = 29

Slack=23-8=15

Slack=5-4=1

Slack=0

Slack=0

Slack=0

Slack=0

RAT=5 RAT=14

RAT=29

RAT=23RAT=3

RAT=0

AT=3 AT=8

AT=4 AT=14

AT=29

AT=0
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Path ReportingPath Reporting
Find N worst paths

Keep priority queue (heap) of unfinished partial paths
Sort so path with worst slack endpoint is always on top
Initially contains only the source node

Algorithm:
Pull partial path off the heap (will be start of next most critical path)
Until path is finished:

o Add worst slack successor to current path
o Add other successors to path and put them on the queue

Repeat until N paths have been reported 

First trace path A,B,E,F

So visit A,C next, expand to 
A,C,E,F

Worst path is A,B,E,F

B D

F

EC

A

3

5

6

159

11

4

Partial paths:  A,B,D, slack = 15
A,C,    slack = 1 

Finally visit A,B,D, expand to
A,B,D,F
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Beyond Combinational LogicBeyond Combinational Logic

So far we’ve assumed only combinational logic
All path requirements are same

No feedback paths or backward interaction in delay graph

Consider a network containing flip-flops
We treated it as a PO of our combinational logic

OK if all clocks are ideal and arrive at the same time … but they don’t

So we add test edges to the delay graph

Edge-triggered FF

C

D

Latch output can
only change here

clock

D

C

Hold

Setup
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Beyond Combinational LogicBeyond Combinational Logic

How are tests used?
Hold test says late clock must precede early data by some amount

Setup test says late data must precede early clock by some amount

Complication - adjusts
Remember that many cycles of activity were “folded” into one cycle

So data arriving at latch is really for next cycle

Need to add/subtract clock cycles so we’re comparing the right times

Need to know which cycle data should be latched in
o Generally assume data is captured by first possible edge of the ideal clock following 

the one that launched it

o Exceptions must be asserted by user, e.g., multi-cycle paths

Ideal clock

Early clock

Late clock
X

ATE (ATL) at one end of test edge 
imposes RATL (RATE) at other end
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Beyond Combinational LogicBeyond Combinational Logic

Gets even more complicated with multiple clock frequencies
Use greatest common divisor (GCD) of clock periods to determine 
smallest possible separation between launch & capture edges

Example:

Clock 1
(period 2)

Clock 2
(period 3)

Sometimes we have 1.5 units of time 

Sometimes we only have 0.5 units of time 
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Slack StealingSlack Stealing

So far we’ve assumed edge-triggered flip-flops
Time that data changes at latch output is determined only by clock

Consider transparent latches 

Edge-triggered FF

C

D

Latch output can
only change here

clock

Transparent latch

C

D

clock

Latch output can
change anywhere in here

Data AT on input can 
affect AT on output!
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Slack StealingSlack Stealing

But this means the arrival at the end of one path affects the 
arrival at the beginning of another path

Violates acyclic assumption

How can we handle this?
Break all cycles

Assume a launch time at each latch

Start with clock leading edge

Add a test to require the capture time to meet this assumption 

Perform a static timing analysis

Adjust your assumptions to equalize slack at latch inputs & outputs

Move the launch time with the clock active window

Repeat until convergence or you run out of time
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Incremental Timing AnalysisIncremental Timing Analysis

How do I update timing after making changes?
Incremental timing allows efficient update of only changed information 
after changes to design

Compute level numbers when computing original ATs, RATs

All changes can be viewed as change to delay edges
o Add an edge

o Delete an edge

o Change the delay on an edge

Keep track of frontiers of timing changes
o Keep sorted by level number

When a value is requested on a node at level x
o Recompute, by level, all frontier values <= than level

o If value changes, add its fanout to the frontier

AT frontier
Change

here  X
Query

X  here    

Effects of propagated slew 
changes on delay make RAT 

case more complicated
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Timing Analysis SummaryTiming Analysis Summary

Gate-level delay models
Can be very complex if you deal with all the effects

Load, slope, pin, etc., all really matter

Simplification is just a fixed delay per gate (or per input pin, same thing)

Logical != Topological path analysis
Logical = we worry about false paths, what the gates really do. This is 
still pretty hard, and a lot of computational work.

Topological = we don’t worry about logic function of nodes in our delay 
graph.  This is conservative, can overestimates longest delay.

Topological analysis = Depth first search
Make delay graph

Can compute ATs, RATs, and Slacks for each node


