(Lec 14) Placement & Partitioning: Part il

X What you know

» That there are 3 big placement styles: iterative, recursive, direct
» Placement via iterative improvement using simulated annealing

» Recursive-style placement via min-cut with F&M partitioning

X What you don’t know
» The last style: direct placement
» One issue is mathematical model: quadratic wirelength minimization

» Second issue is legalization strategy: we do PROUD-style legalization
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Where Are We?

N Physical design--placement via direct methods
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Strategy: Direct Placement

All these use a technique called “Quadratic Placement”

» Model all gates as movable points, all wires as 2-point “springs”

» Minimize total squared Euclidean length: Zi EuclideanLengthz(net i)

» Surprisingly, can do initial parts of this directly, numerically, exactly
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Initial Solution Legalization Strategy Final Placement
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Model Assumptions

N Geometric simplifications
» Gates: model as dimensionless points
» Grid slots: none, ie, no placement grid, no “I gate in | slot” constraints

» Pins: must be fixed somewhere around boundary of the chip

> Wires: we only allow 2-point connections; we minimize % Iengt:h2
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quadratic wirelength:
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/~.
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Model Assumptions: Multipoint Wires

n real netlists, can have a wire connect to > 2 objects

» If it connects to just 2 objects -- “points” -- called a “2 point net”

» If it connects to > 2 objects -- called a “multipoint net”

Y 1dea

» Decompose each multipoint net into a set of 2 point nets

» Necessary to be able use the quadratic wirelength model: square of the
length of the wire only really makes sense for 2 point net

» How to decompose...?
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Decomposing Multipoint Nets

N Multi-point net

» Suppose we have a 5 point net here

AT

P

A 5-point .
net ’f;.?

All pt-to-pt
D connections

[D— » must be included
)

k-pt net becomes
[ke(k-1)]/2
2-pt nets for us

#2-pt nets here == I
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Weighting the Wires

N Each wire can have a “weight”
» Specifies its importance in the minimization problem...
» ...or that there actually are multiple wires between 2 objects

» In this formulation you can’t tell the difference

N But what about a weighted multipoint wire?
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Weighting the Wires

N Question

» When we decompose, what happens to the weights?

» Solution: for k-point net, multiply each 2 pt connection by

» Example: 4 point net, look at typical partition of it objects

k=4 pts
(]
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Overall Model

W Ideas
» Objects are dimensionless points: (xi, yi) placed arbitrarily; pins fixed
» Nets are all 2 point connections (maybe weighted) among these points

» Wirelength is measured as sum of quadratic net lengths
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About the Model

N 'Why quadratic wirelength?

> One reason: can get an analytical solution to min[ 2 quadratic wirelen]

» We can write equations, solve numerically for an exact, best minimum

N Tradeoffs

» Quadratic wirelen NOT a particularly good model of the length of real
wires after routing -- but we can get an analytical min length

» Objects as dimensionless points NOT a particularly good model of a
real placement -- must fix problems caused by ignoring shapes, and slots

» But--there are “fixes” that deal with these problems, and it turns out
you can do HUGE things--millions of gates--with these methods
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Direct Formulation

All quadratic wirelength min. problems look like this eqn:

X How to solve?
» Transform this into a standard optimization problem

» Requires some linear algebra, some calculus
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Basic Matrix Stuff

N Linear equations

» By now (I hope!) you should know that N linear equations in N unknows
can be written compactly as a single matrix equation

all xI +al2x2+al3 x3 =kl all al2 al3 x| Kl
a2l xI +a22 x2 + a23 x3 = k2 a2l a22 a23 x2 | =| K2
a3l xI +a32 x2 +a33 x3 =k3 a3l a32 a33 x3 K3

N But how do we get to quadratic wirelength?

© R. Rutenbar 2001 CMU 18-760, Fall01 13

Quadratic Forms

N Turns out that xT A x is the right form for quadratic wirelens

» x is a column vector, xT is a row vector, A a square matrix

x=|xl| x'= A=lab| AT=
x2 cd

xT Ax=

» xT A x can represent a sum of (constant)exiexj for all possible pairs or i, j

» But what exactly is the right way to set up this problem?
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Start with Point-to-Point Connectivity Info

X Placeable objects
» Set of n connected points {l, 2, ..., n}
N Nets

» 2 point connections only, as discussed before

» A weighted connectivity matrix represents these connections

123 j N _
1 O=0
2 /
- 3
C= ] cij = 3 here
f cil' Can think of this as either:
n —

— i connects to j with 1 net of weight 3
i connects to j with 3 nets of weight 1

We can’t tell the difference using C matrix
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Matrix Formulation

N Start with a simpler problem, 1-dimensional placement
» We want to place the objects {l, 2, ..., n} on a line

» Means we want to solve for xI, x2, ..., xn to minimize weighted
quadratic wirelength

N Question: what is right A for xT A x ?

Quadratic wirelen Matrix form
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Matrix Formulation

X'When in doubt, try a little example: 3 objects placed on a line
@ ! ‘ C matrix is:
@j? m

Quadratic wirelen is:
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Matrix Formulation

N Turns out this is the right matrix A for the job:

Quadratic %o 2 %o 2 %o 2 fo % _ oo
wirelen = 2+ 5%x, +4X3-2x| X2'8X2X3-0X| X3
T
-1 5-4||x,
Try it:
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Matrix Formulation

N Look closely: compare C and A; can you see pattern?

A=| | -1 0

010
. 1 04 -1 5 -4
040 0-4 4
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Matrix Formulation Summary

N It all works

a;; diagonal = 2 c:.
netlist s i 9128 ) Sij
C ii ij

aij off diagonal = =Cjj

@ZiZj [c i Gxi-xi)? ] . x" A x

X New problem

» | don’t just want to write this wirelength down...
» ...l want to solve for the vector of x locations that minimizes it
» How?
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N This minimization is just a higher dimensional version of
something you already should know...

N 1-variable version

Just one variable, x

A
A

To minimize...
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Minimizing x" A x

N Higher dimensional version: 2-variable case

2 variables, x, x,

= x.2 2
f=x,2-x,x, +Xx,

To minimize...

o =2x-x, =0
ox ‘ =
of =-x+2x,=0

Ox -
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Oops: Problem

N The only direct solution here is xi=0 for all i
» This is the solution to the unconstrained form of the problem

» We have to add some additional constraints to avoid this trivial soln

For placement

Add so-called
. T ‘“‘pad” constraint

min x* A x - < to force the solution >

to “spread out”,

pads represent fixed

objects connected to
wires; they can’t move

~ )
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Pad Constraints: Basics

N Assume some objects are fixed, can’t move, and that there are
wires from these to the movable objects
» Like pads are fixed around the periphery of a chip surface

pad X,y
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Pad Constraints

N Back to the 1-var case to see how to optimize

fixed pad fixed pad Quadratic wirelen:
—— I%(x-k)? + 1%(x-h)?
x=k x=? x=h

x2 - 2kx + k2 + x2 - 2hx + h?

N Functional form

» 1/2 » a x2 + bex + constant

To minimize
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Pad Constraints

N 2-var example

» 2 variables (objects); arbitrary number of pads and nets

fixed pad fixed pad Quadratic wirelen:
1(x;-k)? + 1(x,-h), +1(x,-x,)?

x=k x1 x2 x=h

= [2x,2 + 2x,2 - 2x,X,] + [-2kx, -2hx,] + [k? + h,]

N Functional form

x| x2 x| 2ebl b2 x| | + constant
[ j'&«(zxzﬂoﬂzj + joEa]

Written: xT A x + 2bT x + constant
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Pad Constraints

N Concrete 2-variable example

min f= x,2 - X, X F xz2 + b, x, + b, x, + constant

ﬂ =0=

ox, "
x2

ﬂ =0=

0%,
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Pad Constraints

N Reformulate all this with matrices

min xlz-xl x2+x22 + bl x| + b2 x2 + constant

Starting problem Solution

2X| 'X2 = 'bl b
Xl '2X2 = 'b2 I2 -2I XI = - 1
- x2 'b2

Netlist =
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Be Careful...

N Gotta be carefil about the 2s and 1/2s floating around here
» Often see this formulated as 1/2 x" A x + b" x + const

» It’s the same thing, just divide by the “2” in front of b, get a new const

» Here is another simple example

n quadratic wirelen for just x part is:

|3xI2+6x22 -4 x1x2 - 8 x2

iy

N

e 4 AT
! /

=x' Ax+2b" x + const

o

solution still: Ax=-b

N
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Conditions for Solution

N 1-var case

» min 1/2ax2+b x + const  has a solution x = -b/a as long as a = positive

N General case

» min 1/2 *xT A x + bT x + const has a solution if A is positive definite

N Definition: Positive definite

» Matrix A is positive definite if, for any vector x, xTAx > 0 always

Useful result
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Placing in (x,y) Plane

X How to handle the 2 dimensional wirelen minimization task?
» Formulate the x variables and the y variables as 2 separate minimization
problems; minimize them separately

» Why? There are never any x * y terms in the quadratic wirelength
formula; OK to separate out the problem like this

Formulation:
Min x quadratic wirelength
:;D;ed ~e wirelen => Ax=-b
AN
2 —@ Min y quadratic wirelength
\. wirelen=> Ay =-b’
4
fixed x1h oyl
q x2 y2
X,y
xn yn
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4 pads, a new 5 object netlist

©, 1N /-('»') 01100 3-1-100
1 3 C = A =
e 3 IR 440
\ 11010 -1 4-10
> ol110l 0-1-1 4-1
01010 0-10-13
(1,0) forx: Ax=-b= y: Ay=-b’=

(1/2,0)
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Some Subtleties Here

N Note: not precisely the same A as before
» Start with the same C connectivity matrix among placeable objects
» A is still (special diagonal) - [cij]
» But you now have to account for the extra connections to the fixed pad

objects for these elements on the diagonal; you sum weights on these
wires as well as wires to movable objects

o, nHNk a,n
\.|_ 3 12345

\ I
® 2
2 5 A= 3
\ 4
_ s

(1,0)

(1/2,0)
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Placement Result (MATLAB)

(112,0)
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Another Placement Result

N Change weights: remember to change A and b vectors!

(112,0)
A=(21 -1 -10 0 0
-1 4 -1 -1-1
-10 -1 13 -10
0 -1 -1 4-1
\o0-1 0-13
bx = 0 by= (10
0 0
| 0
| |
0.5 0
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Summary So Far...

N Direct placement
» Dimensionless points, 2-point weighted wires
» Minimize sum of squares of wire lengths

» Has a direct-form representation of aggregate wirelength with
functional form

1/2+x" A x +b" x + const or equivalently
xT Ax+2b" x + const
» ...this is minimized at Ax =-b

» Do x and y placements separately

N Open issues

» These objects are really not dimensionless points, and we don’t
yet have a legal placement when this is finished

» There are ways around these problems
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Dealing with Shape

N The “points” really have shape, and need to be in rows

N Problems

» Legalization: the objects almost certainly overlap after quadratic place.
» How do we fix this...?

» Several strategies; we will look informally at one
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Strategy: PROUD

X Who

» Ren Song Tsay, Ernest Kuh, Chi Ping Hsu, “PROUD: A Sea-Of-gates
Placement Algorithm,” IEEE Design & Test of Computers, Dec 1988.

X What
» Recursive legalization by partitioning & refining

» Use quadratic placement as starting point for a recursive strategy
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PROUD: Mechanics

N Mechanics

Balancing
cut

Perform the first
quadratic placement,
inside this region.

Via sorting gates on X,
decide which gates need to
be on the left side
(want ~1/2 on left)

Physical
cutl

Place a physical cutline at
the X center of the region;
We will now reformulate
a new placement problem
just to re-do the gates on the left.
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PROUD: Mechanics

N Mechanics
Physical
cutl

Focus on the gates
inside the shaded region
on the left side of the cut.

Physical
cutl

Big question:
How do we model the
fact that wires connect
to gates on the right?
We can’t just ignore these when we
re-place gates on left in their
own smaller (shaded) region!
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PROUD: Mechanics

N Idea

» We model physical effect of wires that go “outside’” our left-side region
via wires to psuedo-pins which represent ‘“approximately’” where these
wires need to go

» Now, we can solve the left-side alone, again, to get the next cut

Solution: model gates on Process is called
the right as new,“fake” ‘“‘pseudo pin propagation”
pins on the left.
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PROUD: Processing the Subregions

Idea
» Pick one of the regions Rl (eg, the left one) of cut hierarchy
» Propagate pseudo-pins to RI’s cut boundary
» Solve (quadratic re-place) region R1
» Now, pick NEXT region, R2
» Propagate pseudo-pins to R2’s cut boundary

> Note, some of these may be due to the most recent gate placement
motions of solving RI

» Solve (quadratic re-place) region R2
» Pick NEXT region, R3, etc

N Iteration

» Tsay says he goes around this whole loop 3-5 times at each level of the
hierarchy

> ...i.e., we “propagate & replace” each region 3-5 times, which allows
effects of global movements to be ‘“felt” by everybody
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PROUD: Iteration

X 'Why do we repeat this operation?
» Ping-pong back and forth thru subregions?

» Gives objects in region a chance to “influence” other regions

Initial solve Prop. from right Solve left

Prop. from left Solve right Better answer;
repeat this
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PROUD: Iteration

N Easier to see when there are many regions at the level of the
cut hierarchy

Initial solve Replace RI Replace R2 Replace R3

0 »--»

Replace R4 Replace R5 Replace RI
again...
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PROUD: Finalizing Placement

N Does this create a legal placement buy itself? No

» It does a pretty good job of global placement, and guaranteeing that you
do not put more modules in any region than the area allows

» But, it cannot really force individual gates into cell rows
X Solution

» Don’t partition all the way down to individual objects

» Go down to regions with many (10s) of objects, snap onto row grid, and
then do iterative improvement based on swaps of modules

» People do annealing down here, among other things...
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PROUD: Summary

N Quadratic place
» To get the initial placement

» Again, on each region of the cut hierarchy, to help legalize the region,
to move objects to good place after they are forced to go in a region

N Recursive cutting

» To force ~ right number of placeable objects in each region

» Uses quadratic placement and psuedo-pins to do each region
N Final legalization

» Run above till each region has few tens of cells

» Then do iterative improvement
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N Iterative improvement placement by annealing

» “The” approach in the 1980s; runs out of gas at a few 100,000 gates

N Recursive mincut placers
» Based on clever, iterative improvement partitioning

» Coming back into style today; very good for very large ASICs

N Quadratic direct placement

» Point-based, 2-point-wires; can minimize quadratic wirelen exactly, fast

» But, placement not really legal (overlaps); lots of work here.

N Today
» Mix of quadratic and mincut techniques to do ‘“‘gross” placement;
iterative improvement “local refinement” to get legal final placement

» This is really how people really do millions of gates today...
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