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(Lec 14) Placement & Partitioning:  Part III(Lec 14) Placement & Partitioning:  Part III

What you know
That there are 3 big placement styles:  iterative, recursive, direct

Placement via iterative improvement using simulated annealing

Recursive-style placement via min-cut with F&M partitioning

What you don’t know
The last style: direct placement

One issue is mathematical model:  quadratic wirelength minimization

Second issue is legalization strategy: we do PROUD-style legalization
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Where Are We?Where Are We?

Physical design--placement via direct methods
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Strategy:  Direct PlacementStrategy:  Direct Placement

All these use a technique called “Quadratic Placement”
Model all gates as movable points, all wires as 2-point “springs”

Minimize total squared Euclidean length:  Σi EuclideanLength2(net i)

Surprisingly, can do initial parts of this directly, numerically, exactly

Initial Solution Legalization Strategy Final Placement
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Model AssumptionsModel Assumptions

Geometric simplifications
Gates:  model as dimensionless points

Grid slots:  none, ie, no placement grid, no “1 gate in 1 slot” constraints

Pins:  must be fixed somewhere around boundary of the chip

Wires:  we only allow 2-point connections;  we minimize Σ length2

quadratic wirelength:
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Model Assumptions:  Multipoint WiresModel Assumptions:  Multipoint Wires

In real netlists, can have a wire connect to > 2 objects
If it connects to just 2 objects -- “points” -- called a “2 point net”

If it connects to > 2 objects -- called a “multipoint net”

Idea
Decompose each multipoint net into a set of 2 point nets

Necessary to be able use the quadratic wirelength model:  square of the 
length of the wire only really makes sense for 2 point net

How to decompose...?
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Decomposing Multipoint NetsDecomposing Multipoint Nets

Multi-point net
Suppose we have a 5 point net here

Solution:  assume “fully connected” nets

A 5-point
net

Problem:  quadratic wirelength is what?

All pt-to-pt
connections
must be included

k-pt net becomes
[k •( k-1)] / 2 
2-pt nets for us

#2-pt nets here ==
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Weighting the WiresWeighting the Wires

Each wire can have a “weight”
Specifies its importance in the minimization problem...

...or that there actually are multiple wires between 2 objects

In this formulation you can’t tell the difference

But what about a weighted multipoint wire?
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Weighting the WiresWeighting the Wires

Question
When we decompose, what happens to the weights?

Solution:  for k-point net, multiply each 2 pt connection by

Example: 4 point net, look at typical partition of it objects

w =2

k=4 pts
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Overall ModelOverall Model

Ideas
Objects are dimensionless points:  (xi, yi) placed arbitrarily; pins fixed

Nets are all 2 point connections (maybe weighted) among these points

Wirelength is measured as sum of quadratic net lengths
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About the ModelAbout the Model

Why quadratic wirelength?

One reason:  can get an analytical solution to  min[ Σ quadratic wirelen]

We can write equations, solve numerically for an exact, best minimum

Tradeoffs
Quadratic wirelen NOT a particularly good model of the length of real 
wires after routing -- but we can get an analytical min length

Objects as dimensionless points NOT a particularly good model of a 
real placement -- must fix problems caused by ignoring shapes, and slots

But--there are “fixes” that deal with these problems, and it turns out 
you can do HUGE things--millions of gates--with these methods
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All quadratic wirelength min. problems look like this eqn:

How to solve?
Transform this into a standard optimization problem

Requires some linear algebra, some calculus

Direct FormulationDirect Formulation
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Linear equations
By now (I hope!) you should know that N linear equations in N unknows
can be written compactly as a single matrix equation

But how do we get to quadratic wirelength?

Basic Matrix StuffBasic Matrix Stuff

a11 x1 + a12 x2 + a13 x3 = k1
a21 x1 + a22 x2 + a23 x3 = k2
a31 x1 + a32 x2 + a33 x3 = k3

a11 a12 a13
a21 a22 a23
a31 a32 a33

x1
x2
x3

k1
k2
k3

=
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Turns out that xT A x is the right form for quadratic wirelens
x is a column vector, xT is a row vector, A a square matrix

xT A x  can represent a sum of (constant)•xi•xj for all possible pairs or i, j

But what exactly is the right way to set up this problem?

x =   x1 xT =
x2

A =   a  b       AT =
c  d

xT A x =

Quadratic FormsQuadratic Forms
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1 2 3 ......j ....   n

1
2
3
.
i
.
n

cij

C =

i j

cij = 3 here

Can think of this as either:

i connects to j with 1 net of weight 3
i connects to j with 3 nets of weight 1

We can’t tell the difference using C matrix

Start with Point-to-Point Connectivity InfoStart with Point-to-Point Connectivity Info

Placeable objects
Set of n connected points {1, 2, ..., n}

Nets
2 point connections only, as discussed before

A weighted connectivity matrix represents these connections

© R. Rutenbar  2001      CMU 18-760, Fall01   16

Quadratic wirelen Matrix form

Matrix FormulationMatrix Formulation

Start with a simpler problem, 1-dimensional placement
We want to place the objects {1, 2, ..., n} on a line

Means we want to solve for x1, x2, ..., xn to minimize weighted 
quadratic wirelength

Question:  what is right A for xT A x ?
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1 2

3

1

4

C matrix is:

Quadratic wirelen is:

Matrix FormulationMatrix Formulation

When in doubt, try a little example: 3 objects placed on a line

1 23
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Quadratic
wirelen =

= xT A x =

Matrix FormulationMatrix Formulation

Turns out this is the right matrix A for the job:

1*x1
2 + 5*x2

2 + 4*x3
2 - 2*x1*x2 - 8*x2*x3 - 0*x1*x3

1  -1   0
-1   5  -4
0  -4   4

x1 x2 x3
x1
x2
x3

Try it:
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C = A =1 2
1

3
4

A = 

Matrix FormulationMatrix Formulation

Look closely: compare C and A;  can you see pattern?

0  1  0
1  0  4
0  4  0

1  -1   0
-1   5  -4
0  -4   4

Diagonal

Cij
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It all works

New problem
I don’t just want to write this wirelength down...

...I want to solve for the vector of x locations that minimizes it

How?

netlist
c ij a ij

aii diagonal = Σj cij

aij off diagonal = -cij

C A

1/2 ΣiΣj [c ij • (xi - xj)2 ]      xT A x

Matrix Formulation SummaryMatrix Formulation Summary
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Just one variable, x

To minimize...

Minimizing xT A xMinimizing xT A x

This minimization is just a higher dimensional version of 
something you already should know...

1-variable version
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2 variables, x1 x2

To minimize...

Minimizing xT A xMinimizing xT A x

Higher dimensional version:  2-variable case

f = x1
2 - x1x2 + x2

2

∂f     = 2x1 - x2 = 0

∂f     = -x1 + 2x2 = 0
∂x

∂x

=
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min xT A x

For placement

Add so-called
“pad” constraint
to force the solution
to “spread out”,
pads represent fixed
objects connected to
wires; they can’t move

Oops:  ProblemOops:  Problem

The only direct solution here is xi=0 for all i
This is the solution to the unconstrained form of the problem

We have to add some additional constraints to avoid this trivial soln
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fixed
x,y

Pad Constraints:  BasicsPad Constraints:  Basics

Assume some objects are fixed, can’t move, and that there are 
wires from these to the movable objects

Like pads are fixed around the periphery of a chip surface
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Back to the 1-var case to see how to optimize

Functional form
1/2 • a x2 + b•x + constant

To minimize

x=?x=k x=h

fixed pad fixed pad Quadratic wirelen:

Pad ConstraintsPad Constraints

1*(x-k)2 + 1*(x-h)2

=  x2 - 2kx + k2 + x2 - 2hx + h2

= 
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2-var example
2 variables (objects); arbitrary number of pads and nets

Functional form

x1

fixed pad fixed pad Quadratic wirelen:

x2

x1 x2   x1
x2

A (2x2) + 2   b1 b2 x1
x2

+ constant• • •

Written: xT A x  + 2bT x  + constant

Pad ConstraintsPad Constraints

x=k x=h 1(x1-k)2 + 1(x2-h)2 +1(x1-x2)2

= [2x1
2 + 2x2

2 - 2x1x2] + [-2kx1 -2hx2] + [k2 + h2]

•
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min   f =   x1
2 - x1 x2 + x2

2 + b1 x1 + b2 x2 + constant

Pad ConstraintsPad Constraints

Concrete 2-variable example

x1

x2
=

∂f   = 0 =
∂x1

∂f   = 0 =
∂x2
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min  x12 - x1 x2 + x22 + b1 x1 + b2 x2 + constant

Starting problem Solution

Pad ConstraintsPad Constraints

Reformulate all this with matrices

x1

x2
=

2  -1
-1   2

-b1

-b2

2x1 -x2 = -b1
x1 -2x2 = -b2

fixed

x1

x2

fixed
Netlist =

0  1
1  0

C=
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1

2

(0,0)

(1,1) quadratic wirelen for just x part is:

3 x12 + 6 x22 -4 x1x2  - 8 x2 + 1

1

2

4

3  -2
-2   6

x1
x2

x1 x2 + 2  0  -4           +  1

= xT A x + 2bT x + const

solution still:   Ax = -b =

x1
x2

0
4

Be Careful...Be Careful...

Gotta be careful about the 2s and  1/2s floating around here
Often see this formulated as 1/2  xT A x + bT x + const

It’s the same thing, just divide by the “2” in front of b, get a new const

Here is another simple example
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Useful result

Conditions for SolutionConditions for Solution

1-var case
min 1/2 a x2 + b x + const has a solution x = -b/a  as long as a = positive

General case
min 1/2 • xT A x + bT x + const has a solution if A is positive definite

Definition:  Positive definite
Matrix A is positive definite if, for any vector x, xTAx > 0 always
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1

2
3

4

fixed
x,y

fixed
x,y

Formulation:

Placing in (x,y) PlanePlacing in (x,y) Plane

How to handle the 2 dimensional wirelen minimization task?
Formulate the x variables and the y variables as 2 separate minimization 
problems;  minimize them separately

Why?  There are never any x • y terms in the quadratic wirelength
formula;  OK to separate out the problem like this

Min x quadratic wirelength
wirelen =>  Ax = -b

Min y quadratic wirelength
wirelen =>  A y = -b’

x1
x2
…
xn

y1
y2
…
yn
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1

2

3 4

(1,0)

(0, 1)

(1/2,0)

C  = A  = 

for x:  A x = -b = y:   A y =-b’= 

5

(1,1)

ExampleExample

4 pads, a new 5 object netlist

0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

3 -1 -1  0  0
-1  4 -1 -1 -1 
-1 -1  4 -1  0
0 -1 -1  4 -1
0 -1  0 -1  3
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1

2

3 4

(1,0)

(0, 1)

(1/2,0)

5

(1,1)

Some Subtleties HereSome Subtleties Here

Note: not precisely the same A as before
Start with the same C connectivity matrix among placeable objects

A is still (special diagonal) - [cij]

But you now have to account for the extra connections to the fixed pad 
objects for these elements on the diagonal; you sum weights on these 
wires as well as wires to movable objects

A=

1
2
3
4
5

1  2  3  4  5
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Placement Result  (MATLAB)Placement Result  (MATLAB)
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10
10

A =  21  -1  -10   0   0
-1   4    -1  -1 -1

-10  -1   13  -1  0
0  -1    -1   4 -1
0  -1     0  -1  3

1

5

43
2

bx = 0
0
1
1

0.5

by =   10
0
0
1
0

Another Placement ResultAnother Placement Result

Change weights:  remember to change A and b vectors!
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Summary So Far…Summary So Far…

Direct placement
Dimensionless points, 2-point weighted wires

Minimize sum of squares of wire lengths

Has a direct-form representation of aggregate wirelength with 
functional form

1/2 • xT A x + bT x + const   or equivalently

xT A x + 2 bT x + const  

...this is minimized at Ax = -b

Do x and y placements separately

Open issues
These objects are really not dimensionless points, and we don’t
yet have a legal placement when this is finished

There are ways around these problems
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The “points” really have shape, and need to be in rows

Problems
Legalization: the objects almost certainly overlap after quadratic place.

How do we fix this…?

Several strategies;  we will look informally at one

Dealing with ShapeDealing with Shape

1

2

3

4
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Strategy:  PROUDStrategy:  PROUD

Who
Ren Song Tsay, Ernest Kuh, Chi Ping Hsu, “PROUD: A Sea-Of-gates 
Placement Algorithm,” IEEE Design & Test of Computers, Dec 1988.

What
Recursive legalization by partitioning & refining

Use quadratic placement as starting point for a recursive strategy
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PROUD: MechanicsPROUD: Mechanics

Mechanics

Balancing 
cut

Perform the first
quadratic placement, 

inside this region.
Via sorting gates on X, 

decide which gates need to
be on the left side
(want ~1/2 on left)

Place a physical cutline at 
the X center of the region;
We will now reformulate
a new placement problem

just to re-do the gates on the left.

Physical
cut1
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PROUD: MechanicsPROUD: Mechanics

Mechanics

Focus on the gates
inside the shaded region

on the left side of the cut.

Physical
cut1

Physical
cut1

Big question:
How do we model the
fact that wires connect
to gates on the right?

We can’t just ignore these when we
re-place gates on left in their 
own smaller (shaded) region!
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PROUD: MechanicsPROUD: Mechanics
Idea

We model physical effect of wires that go “outside” our left-side region 
via wires to psuedo-pins which represent “approximately” where these 
wires need to go

Now, we can solve the left-side alone, again, to get the next cut

Solution:  model gates on 
the right as new,“fake” 

pins on the left.

Process is called 
“pseudo pin propagation”
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PROUD:  Processing the SubregionsPROUD:  Processing the Subregions

Idea
Pick one of the regions R1 (eg, the left one) of cut hierarchy

Propagate pseudo-pins to R1’s cut boundary

Solve (quadratic re-place) region R1

Now, pick NEXT region, R2

Propagate pseudo-pins to R2’s cut boundary

Note, some of these may be due to the most recent gate placement
motions of solving R1 

Solve (quadratic re-place) region R2

Pick NEXT region, R3, etc

Iteration
Tsay says he goes around this whole loop 3-5 times at each level of the 
hierarchy

…i.e.,  we “propagate & replace” each region 3-5 times, which allows 
effects of global movements to be “felt” by everybody
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PROUD: IterationPROUD: Iteration

Why do we repeat this operation?
Ping-pong back and forth thru subregions?

Gives objects in region a chance to “influence” other regions

Initial solve Prop. from right Solve left

Prop. from left Solve right Better answer; 
repeat this
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PROUD: IterationPROUD: Iteration

Easier to see when there are many regions at the level of the 
cut hierarchy

Initial solve

. . .

Replace R1

Replace R1
again...

Replace R2 Replace R3

Replace R4 Replace R5

1 2

3

4

5
1
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PROUD: Finalizing PlacementPROUD: Finalizing Placement

Does this create a legal placement buy itself?  No
It does a pretty good job of global placement, and guaranteeing that you 
do not put more modules in any region than the area allows

But, it cannot really force individual gates into cell rows

Solution
Don’t partition all the way down to individual objects 

Go down to regions with many (10s) of objects, snap onto row grid, and 
then do iterative improvement based on swaps of modules

People do annealing down here, among other things…
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PROUD: SummaryPROUD: Summary

Quadratic place
To get the initial placement

Again, on each region of the cut hierarchy, to help legalize the region, 
to move objects to good place after they are forced to go in a region

Recursive cutting
To force ~ right number of placeable objects in each region

Uses quadratic placement and psuedo-pins to do each region

Final legalization
Run above till each region has few tens of cells

Then do iterative improvement



Page 24

© R. Rutenbar  2001      CMU 18-760, Fall01   47

SummarySummary
Iterative improvement placement by annealing

“The” approach in the 1980s; runs out of gas at a few 100,000 gates

Recursive mincut placers
Based on clever, iterative improvement partitioning

Coming back into style today;  very good for very large ASICs

Quadratic direct placement
Point-based, 2-point-wires;  can minimize quadratic wirelen exactly, fast

But, placement not really legal (overlaps); lots of work here.

Today
Mix of quadratic and mincut techniques to do “gross” placement; 
iterative improvement “local refinement” to get legal final placement

This is really how people really do millions of gates today…


