
Page 1

© R. Rutenbar 2001, CMU 18-760, Fall01 1

(Lec 13) Placement & Partitioning: Part II(Lec 13) Placement & Partitioning: Part II

What you know
That there are 3 big placement styles: iterative, recursive, direct

Placement via iterative improvement using simulated annealing

What you don’t know
The other 2: recursive and direct placement

The fact that they have many points of great similarity

Real algorithms for doing recursive or direct placement

Recursive: 2 most famous heuristics: K&L, F&M

What’s later still (part III)
Direct: classical quadratic formulation + Tsay-style legalization

© R. Rutenbar 2001, CMU 18-760, Fall01 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001, CMU 18-760, Fall01 3

Where Are We?Where Are We?

Physical design--placement via recursive, direct methods

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

Midsem
break

© R. Rutenbar 2001, CMU 18-760, Fall01 4

DeadlinesDeadlines

Project2
November 8 (next THU)

Email us your website URL

Homework 4 (still TBD on the .pdf on website)
Propose: Nov 15 (Thu in class)

Paper #2
Propose Nov 13 (Tue in class)

Decided for this one to still be written – we’ll do PPT for Paper3

What’s left in 760
HW5 (layout, timing), HW6 (geometric data structs, short)

Project 3 (a REAL floorplanner – pay attn to last prob on HW4!)

Paper 3 – something about layout

Page 3

© R. Rutenbar 2001, CMU 18-760, Fall01 5

Recursive Placement: Min-CutRecursive Placement: Min-Cut

Basic idea
The “simplest” placement decision you can make is: cut the chip into 2
pieces, partition gates over the 2 sides, minimize wiring in between

Can continue doing this recursively with results of each partition step

x
x

x
x

x
x
x

x

x
x

x
xx

x
x

x

x
x x

x
x

x
x

x
x

x
x x

x
x

x
x

x
x

x
x

x
x

x x
x

x
x

x
xx

x
x

x
x

x
x

x
x

x
x

x
x x

x
x

x

x

x
x

x
x

x
x

x

x

x x
x

x x
x x

x
x
x x

x
x

x

x

x
x

xx

x
xx x

x

x
x

x
xx

x

xx
x

x
x

x
x

x
x

x
x

x
x
x

x

x
x

x
x

x
x

x
x

x

x x
x

x x

x x

x
x
x x

x
x

x

x

x
x

xx

x

xx
x

x

x
x

x
xx

x
xxx

x x
x
x

x
x

x

x
x

x
x

x

x

x
x

xx

x
x
x

x

x x
x

x
x

x x
x
x
x x

x
x

x

x

x
x

xx

xxx

x

x

x
x

x

xx
x

xx
x

x
x

x
x

All the gates 1st cut 2nd cut 3rd cut…

© R. Rutenbar 2001, CMU 18-760, Fall01 6

Abstract Problem To Solve: PartitioningAbstract Problem To Solve: Partitioning

Partition the gates between 2 regions so that
Capacity (# of gates allowed) on each side is not exceeded

Cost (i.e., the number) of wires across the cut is minimized

Classical problem is bipartitioning

Minimize the number of wires “crossing the cut”

Cut line

Page 4

© R. Rutenbar 2001, CMU 18-760, Fall01 7

Note: Its Very Easy to Do this PoorlyNote: Its Very Easy to Do this Poorly

Example capacity constraint: <= 600K gates per side
Capacity constraint: <= 500K gates/side

IO constraint: <=200 “pins” == connections on each side

Netlist.
1,000,000 gates

700,000 gates

300,000 gates

550,000 gates

450,000 gates

• • • 950
pins needed • • • 180

pins needed

Bad... Good...

© R. Rutenbar 2001, CMU 18-760, Fall01 8

Solution Style: Iterative ImprovementSolution Style: Iterative Improvement

Produce initial
network partition

(probably random)

Swap some gates
across cut line
to improve cost

Evaluate
Stopping Criterion:
Is it good enough?

Not
Good

Enough

Good Enough--Done

One Pass
thru the
improvement
phase

Turns out you can be
very clever about this…

Page 5

© R. Rutenbar 2001, CMU 18-760, Fall01 9

Bipartitioning AlgorithmsBipartitioning Algorithms

Kernighan-Lin
Most famous partitioning heuristic, core of all others

Right idea -- but too slow

Aside: Yes, that Kernighan, of C-UNIX fame; this was his PhD thesis...

Fiduccia & Mattheyses
Start with Kernighan-Lin (K-L), but made it fast

Clever data structure, and some very minor tweaks make the algorithm
linear O(n) for n gates for one improvement pass

Core of most serious partitioners today

Aside: fi-DOO-chi-uh and muh-TEE-sis, 2 guys at GE Labs in early 1980s

© R. Rutenbar 2001, CMU 18-760, Fall01 10

K&L Partitioning ModelK&L Partitioning Model

Minimize total sum of costs of nets across cut
Each net has a cost cij, and we assume 2n gates, to be partitioned
equally into n gates on each side of the cut

n modules
here...

...and n here

T = Σ cij = minimum
Cut nets

Cij

Page 6

© R. Rutenbar 2001, CMU 18-760, Fall01 11

K&L Improvement ProcedureK&L Improvement Procedure

A B

A - {a1} B - {b1}

b1 a1

0. Start with any (random) partition

A B

1. Identify a1• in A, b1• in B so that
swapping a1, b1 gives maximum gain

a1

b1

2. Swap a1 and b1 and lock them
in place--they cannot swap again

A - {a1} B - {b1}

b1 a1

3. Continue: Identify a2,• b2• so that
swapping a2, b2 gives max gain…

a2

b1

© R. Rutenbar 2001, CMU 18-760, Fall01 12

K&L: Critical IdeasK&L: Critical Ideas

Gain
Gain is the change in cost that results from swapping one gate in the A-
side with one gate in the B-side.

Compute it as Σcut cij - Σcut cij

Be greedy, but persevere
Always do the very best next swap (biggest Gain number) you can

Do this swap even if it’s negative, ie, even if it makes the partition worse

So, the swap to pick is the strictly biggest gain:

Biggest positive gain (makes cut better)

Smallest (closest to 0) negative gain (makes cut the least worse)

Do all n swaps
…ie, swap until nothing is left to swap.

After
swap

Before
swap

Page 7

© R. Rutenbar 2001, CMU 18-760, Fall01 13

K&L ExampleK&L Example
A B

A - {a1} B - {b1}

b1 a1 gain g1 is max

B-{b1,b2}

b1 a1 gain g1 is max (swapped a1, b1)

b2 a2 gain g2 is max (swapped a1,b1
and a2,b2)

swap

A-{a1,a2}

Starting
partition

After the
1st swap

After the
2nd swap

Continue…

© R. Rutenbar 2001, CMU 18-760, Fall01 14

K&L ExampleK&L Example

Keep going until all n pairs swapped

New problem: How many swaps should we keep?
Makes no sense to do them all--this just reverses A and B!

What the best set of all these swaps the maximizes overall gain?

This is the next really clever part of K&L...

A = empty

b1 a1 gain g1 is max (swapped a1, b1)

b2 a2 gain g2 is max (swapped a1,b1
& a2,b2)

swap

B = empty

b3 a3

bn an

gain g3 is max (swapped a1,b1
a2,b2, & a3,b3)

gain gn is max (swapped all)

Page 8

© R. Rutenbar 2001, CMU 18-760, Fall01 15

K&L: Picking Swap SequenceK&L: Picking Swap Sequence
Important result

Gain from doing swaps 1,2, ... k in sequence is Gk = Σ gi
Gk is NOT monotonic function of k--it has hills & valleys

Interpretation:
Good to do some locally bad swaps, to get to globally better answer

This is a particular form of “hill-climbing”

b1 a1

b2 a2

swap

b3 a3

bk ak

bn an 1 2 3 k n

Gk = Σ gi

Gk

of swaps

Best sequence

Bad
Seq

OK Seq

i=1

k

i=1

k

© R. Rutenbar 2001, CMU 18-760, Fall01 16

K&L: Doing the SwapsK&L: Doing the Swaps

Interpretation:
We will commit to do these k swaps, since they MAXIMIZE gain

A - {a1,a2…, ak} B - {b1,b2, …bk}

b1 a1

b2 a2

swap

bk ak

b1 a1

b2 a2

bk ak

Improved result

Old a’s Old b’s

Page 9

© R. Rutenbar 2001, CMU 18-760, Fall01 17

K&L ProcedureK&L Procedure

So, what do we actually do?
Evaluate all n swaps, maximizing the gain on each swap

(Remember: gain may be negative on some swaps--this is OK)

After all n swaps done, find k that gives best Gk = Σ gi

Commit the swaps a1,b1 & a2,b2 & a3,b3 ... & ak,bk

This completes one “improvement pass” of K&L

K&L overall
Just keep doing improvement passes until it’s not getting better

i=1

k

© R. Rutenbar 2001, CMU 18-760, Fall01 18

K&L: Why It WorksK&L: Why It Works
A B

Dense, interconnected
cluster of gates on the B
side. Really wants to
be on the A side...

A B

But as you start
swapping individual
gates over to B,
intermediate results
look really bad -- you
suddenly are splitting
that dense cluster across
partitions...

swaps

gain

swaps

gain

Page 10

© R. Rutenbar 2001, CMU 18-760, Fall01 19

K&L: Why It WorksK&L: Why It Works
A B

swaps

gain
But, eventually
the whole cluster
ends up on the A
side, and overall
this is the better
solution for partition

Hill climbing is critical
By looking at all possible max gain swaps...

...and then picking the best sequence of max gain swaps...

..while tolerating individual swaps that are bad (negative)

...you can get a much better overall solution

© R. Rutenbar 2001, CMU 18-760, Fall01 20

K&L: Quality & ComplexityK&L: Quality & Complexity

How well does K&L work?
Fabulous. Amazingly good (with respect to what came before it)

The “be greedy but persevere” idea is a very famous idea

How fast does K&L run
Not.

Why? How do we select the “swap with best gain”?

It’s possible to tag every gate with some partial numerical info that can
be used to calculate a single gain for a single swap, quickly

Still need to find the best: intrinsically requires sorting the gates by
these numerical tags

Sort of n points is O(n logn), but we do this n times, as:

(n logn) + (n-1 log n-1) + (n-2 log n-2) + ... + (2 log 2) + (1 log 1)
1st pair 2nd pair 3rd pair next to last last pair

This sum is O(n2 log n). Ouch, for big n.

Page 11

© R. Rutenbar 2001, CMU 18-760, Fall01 21

Improving K&L: Fiduccia & MattheysesImproving K&L: Fiduccia & Mattheyses

F&M: Keeps good parts of K&L
Iterative improvement, with multiple passes, as before

Hill-climbing, selecting best swap sequence

F&M: New ideas
Better data structure for finding what to swap for max gain

Clever accounting for what needs to get updated after cell moves

Gates not just points anymore: they have size

net i has n(i)=4 cells connected to it

cell j has size(j)=6j

© R. Rutenbar 2001, CMU 18-760, Fall01 22

F&M BasicsF&M Basics

New constraint: Balance criterion
Each cell i now has size s(i), so just having same # of cells in each
partition is not enough, we need better defn of “balance”

Balance criterion: want |A| / (|A| + |B|) ≈ r for some 0 <= r <= 1

Ideally want r around 1/2, but doesn’t have to be exactly 1/2

Typically, allow r to be in a range, for example: r in [0.3, 0.7]

User gets to pick this range of r

A B size of A = Σi ε A size(i) = |A|

size of B = Σi ε B size(i) = |B|

Page 12

© R. Rutenbar 2001, CMU 18-760, Fall01 23

F&M Procedure: SkeletonF&M Procedure: Skeleton

Hard stuff: Choose best cell? Update gains?

A Brelocate
1 cell

gain = reduction in # nets cut by partition

Choose a cell to relocate across partition
that gives max gain,
that doesn’t mess up balance too much

Swap it, but then lock this cell:
it doesn’t move again

Update gains of other affected cells

If more free cells that won’t mess up balance
go choose another cell to move
else quit -- this is 1 complete pass

© R. Rutenbar 2001, CMU 18-760, Fall01 24

F&M: Finding the Move of Max GainF&M: Finding the Move of Max Gain

Observation

We can generalize this
Overall, the gain from any move is bounded by |max {p(i)}|

Suggests a data structure to exploit this...

A Brelocate
1 cell

Cell i has p(i) pins, it can attach to
at most p(i) distinct nets

If you relocate cell i, the most you
can affect the gain is p(i)

-p(i) <= gain <= +p(i)

Worst-case
gain = -p(i)i

p(i)
nets

Best-case
gain = +p(i)

i
p(i)
nets

i

Page 13

© R. Rutenbar 2001, CMU 18-760, Fall01 25

F&M: Bucket Sort Data StructuresF&M: Bucket Sort Data Structures
A

+Pmax

-Pmax

maxGain

+Pmax

-Pmax

maxGaincell i cell j
cell q cell s

B

A buckets B buckets

Nets
1

N

n (A(n),B(n)) cell x cell y
Cells on this net

Cells
1

C

inet w net v loc
Nets on this cell

Free cellscell f cell g

© R. Rutenbar 2001, CMU 18-760, Fall01 26

F&M: Finding Move for Max GainF&M: Finding Move for Max Gain

To choose cell to move for max gain

To update if gains change

+Pmax

-Pmax

maxGain cell cell

A buckets Keep maxGain pointing at
cells which will give max gain;
can just grab a cell here

cell cell
cell cell
cell cell

+Pmax

-Pmax

maxGain
cell cell

Buckets

cell cell

remove it

reinsert it

update if
needed

Cells
1

C

i loc
find it

Page 14

© R. Rutenbar 2001, CMU 18-760, Fall01 27

F&M Bucket Data StructureF&M Bucket Data Structure

How much time to find max gain move?
Constant time, O(1), just look at maxGain slot in buckets

Also, to maintain maxGain in constant time, assuming you have to know
where all the cells are; again just some pointer hacking

To move n cells, F&M is O(n), K&L was O(n2 log n)

Big improvement!

What’s left?
How to update all gains on all affected cells when we move one cell ?

K&L assumed this was O(n) for a single swap (you might to update all
the cells), so was O(n2) to do all n swaps

How do we improve on this?

© R. Rutenbar 2001, CMU 18-760, Fall01 28

Defn: Distribution of a net n

Defn: Critical net
Net n with (A(n), B(n)) critical if A(n) or B(n) = 0 or = 1

F&M Improvements: Net CriticalityF&M Improvements: Net Criticality

net
n

Distribution of n = (A(n), B(n))
= (# cells of n in A, # of cells of n in B)

Example at left, distrib = (3,2)

net
n

net
n

net
n net

n

Examples
4 pt net

distrib (3,1)
critical

distrib (4,0)
critical

distrib (0,4)
critical

distrib (1,3)
critical

net
n

distrib (2,2)
Noncritical

A B

Page 15

© R. Rutenbar 2001, CMU 18-760, Fall01 29

F&M Improvements: Net CriticalityF&M Improvements: Net Criticality

Critical nets -- who cares?
Observation 1: if you move 1 cell on critical net, you change the gain!

Observation 2: if net not critical, no matter what cell moves, no change

Result: Only cells on critical nets affect gain

Minor point
Need to look at nets that were critical before you moved cell(i)...

...and nets that go critical after you move cell(i)

Just a little more bookkeeping

relocate
i

i

Noncritical
nets on i

Critical
nets on i

© R. Rutenbar 2001, CMU 18-760, Fall01 30

F&M: Using CriticalityF&M: Using Criticality

An important side effect from locking cells after move
Nets can’t stay critical forever!

Eventually, cells on a net freeze their positions, so net can’t contribute
to further gain changes

Example

move,
lock move,

lock

(2,2) noncritical (3,1) critical (4,0) critical

move,
lock

(3,1) critical

move,
lock

(2,2) noncritical

Page 16

© R. Rutenbar 2001, CMU 18-760, Fall01 31

F&M: Net UpdatesF&M: Net Updates

Defn: Net Update
Net update is the process of scanning all the cells on net i to see if they
are critical (ie, are they connected to any other critical nets?)

Key result
You never have to do more than a constant number of updates on any
net in one improvement pass of F&M. Constant = 4, it turns out

Little nets (2,3 cells) after few moves: all their cells freeze

Big nets (>=4 cells) after few moves: they freeze to be noncritical

Nets
1

N

i (A(i),B(i)) cell x cell y
Scan thru all these cells on net i..

Amount of “work” to do one of these
update scans is just proportional to
how many cells are attached to this net

© R. Rutenbar 2001, CMU 18-760, Fall01 32

F&M: Complexity (Informal)F&M: Complexity (Informal)

How much work to do 1 improvement pass?
Recall, 1 pass means start with all cells free, do max-gain moves until no
cells are free--they are all locked in one side of partition

We know that updating maxGain is O(1)

What about updating all cell gains on affected cells after a move?

Look at nets...

Total work = Σall nets i (work per net i)

= Σall nets i (work / update of net i X # of updates on i)

<= Σall nets i (work / update of net i X constant)

<= constant X Σall nets i (work / update of net i)

<= constant X Σall nets i (#cells on net i)
<= constant X (total number of cell pins in entire netlist)
<= constant’ X (#cells in the netlist)
= linear in problem size, O(n) (woohoo!)

Page 17

© R. Rutenbar 2001, CMU 18-760, Fall01 33

F&M: SummaryF&M: Summary

Complexity of 1 pass is linear in problem size
A very important and practical result

Impact
Everybody liked results K&L was capable of getting

F&M preserves the overall improvement strategy, but makes it
extremely fast, linear in problem size

Can attack very large netlists with F&M, ~1M cells

This is now one of the default, standard ways to do big partitioning probs

How about today…?
Additional set of ideas improves this further, uses some hierarchical
clustering, and some other clever stuff.

Best tool around today is called “ hMetis”, from U Minnesota. You can
get it from their web page; like CUDD, widely used, easy to use.

© R. Rutenbar 2001, CMU 18-760, Fall01 34

Back to Recursive Placement via Min-CutBack to Recursive Placement via Min-Cut

Think of repeated partitioning process as a “hierarchy” of cuts
Direction of each cuts is really arbitrary; shown alternating H, V here

Shaded region is
boundary of current
min-cut partitioning task

Cut-line for 1st min-cut
partitioning task

Can keep cutting until just 1 gate/region, or can quit with <=K gates/region

Page 18

© R. Rutenbar 2001, CMU 18-760, Fall01 35

Back to Recursive PartitioningBack to Recursive Partitioning

How do people actually apply partitioning to placement?
Start: initial netlist of gates + wires;
Let pQueue be a queue of regions on chip (from cut hierarchy) that

we still need to partition;
pQueue = <whole chip, entire netlist>;

while(pQueue not empty) {
<R, N> = pop region and netlist for gates in this region from pQueue;
choose a cut direction for region: horizontal or vertical;
decide the balance criterion you want to hit (ie, look where you

think you want to put the cutline on your placement grid);
execute partition algorithm on <R,N> to yield 2 new partitions,

<A,Na>, <B,Nb>
if(region A of <A, Na> is big enough to keep cutting)

push <A, Na> onto pQueue;
if(region B of <B, Nb> is big enough to keep cutting)

push <B, Nb> onto pQueue;
}

© R. Rutenbar 2001, CMU 18-760, Fall01 36

Recursive Cutting ExampleRecursive Cutting Example
<region R, netlist N>

<R1, N1> <R2, N2>

<R3, N3>

<R4, N4> <R5, N5><R6, N6>

pop

pQueue

Partition
Region R3
as shown

Page 19

© R. Rutenbar 2001, CMU 18-760, Fall01 37

Recursive Cutting ExampleRecursive Cutting Example
<region R, netlist N>

<R1, N1> <R2, N2>

<R3, N3>

<R4, N4> <R5, N5><R6, N6>

pQueue

Mincut creates 2 child regions, R7, R8,
with their own local gate netlists,
which we PUSH on Queue for later
(recursive) mincut

<R7, N7> <R8, N8>

© R. Rutenbar 2001, CMU 18-760, Fall01 38

Congestion vs WirelengthCongestion vs Wirelength

Mincut optimizes congestion
It tries directly to minimize number (or sum of costs on) wires across all
cuts as we recursively go down the cut “hierarchy”

This “tends” to minimize wirelength…

…but, it doesn’t really guarantee to minimize it
There are some particular problem cases that mincut can create

Luckily, there are also some decent fixes

We’ll look at just one: Terminal Propagation
By Dunlop & Kernighan

Page 20

© R. Rutenbar 2001, CMU 18-760, Fall01 39

Partition OptimizationsPartition Optimizations

Terminal propagation
Now a standard technique, introduced by Dunlop and Kernighan of Bell
Labs, for use with Kernighan-Lin partitioning improvement

Idea: enforce some “coupling” between objects that are connected, but
which have ended up in different regions after a hierarchy of slicing cuts

1

2

3

4

1

2

3

4

cut

1

2

3

4
cut

1

2
3

4

cut

Oops! Cut was
good, but global
wiring was ignored

© R. Rutenbar 2001, CMU 18-760, Fall01 40

Terminal PropagationTerminal Propagation

Basic idea
Represent, at least crudely, what’s going on in the other partitions while
you do each cut

Need somehow to create/represent a view of how global wires are
evolving across cuts

1
2

3

4

5

1
2

3

4
5

1
2

3

4 5

Bad partition,
it lengthens this
already long
global wire

Better partition,
it keeps modules
on global wire
more local

Page 21

© R. Rutenbar 2001, CMU 18-760, Fall01 41

Terminal PropagationTerminal Propagation

Mechanics
You try to build a crude “geometric wire model” for the wires that are
going across the other cuts, and use this to bias your current
partitioning task to minimize spreading connected objects across the
the current cut

Example

1
2

3

4
5

6

7

Trying to partition
this region

1
2

3

4 5

6

7

This is what
we want to avoid...

New cut line

© R. Rutenbar 2001, CMU 18-760, Fall01 42

Terminal Propagation: MechanicsTerminal Propagation: Mechanics

Dunlop & Kernighan used a simple Steiner wire model

Ignore cells actually in the
region you are partitioning, and

lump all other cells in other
regions at the geometric center

of their respective region

Quickly build a decent
Steiner tree wiring that

connects all these center pts

Page 22

© R. Rutenbar 2001, CMU 18-760, Fall01 43

Aside: Steiner Wire ModelsAside: Steiner Wire Models

Recall: many wire estimation models for a given set of points
Idea is to estimate the length or shape of the wire, without having to
actually call an expensive detailed router to route it

Half-perimeter of the
the smallest bounding
box is most common

scalar estimator

Minimum Manhattan
spanning tree is very practical.

Can do this in O(n2)
for n points

Minimum Steiner tree
is the best you can get,
but very expensive to

approximate

xx

Steiner
points

© R. Rutenbar 2001, CMU 18-760, Fall01 44

Back to Terminal PropagationBack to Terminal Propagation

Dunlop & Kernighan used a really simple Steiner heuristic
Idea is to get a rough idea of “where” the global portion of wires
connected to objects inside a “live” partition wants to go

Steiner wire

Now, where the wire
crosses the boundary of the

current region, mark a pseudo pin

Page 23

© R. Rutenbar 2001, CMU 18-760, Fall01 45

Terminal PropagationTerminal Propagation

Use these pseudopins to “bias” the current partition
ie, model them as fixed, unswappable modules on each side of the cut,
with high-weight connections to them

Use this to alter swapping cost function to favor swaps that keep
modules close to their pseudopins

4 5 1
2

3

4 5 6

7

This is what
we hope to get...

New cutline

© R. Rutenbar 2001, CMU 18-760, Fall01 46

Recursive Min-cut Placement: SummaryRecursive Min-cut Placement: Summary

Relies on good bipartitioning algorithms for netlists
Cut the netlist into 2 parts, minimizing (number or cost of) wires
crossing the cut between the 2 parts

K&L was the first good quality, practical partitioning algorithm

F&M made it fast for large-scale IC designs

ASIC placement
Min-cut optimizes congestion directly (wires crossing cuts)

Min-cut only indirectly optimizes netlength

Tricks for introducing some notions of “net length” into min-cut placer

Practical for > 1M gate netlists, very fast, some recent innovations based
on smart clustering (hMETIS) improve it over F&M

Usage on the rise in recent high-end placers for huge ASICs

