(Lec 13) Placement \& Partitioning: Part II

- What you know
- That there are 3 big placement styles: iterative, recursive, direct
- Placement via iterative improvement using simulated annealing
- What you don't know
- The other 2: recursive and direct placement
- The fact that they have many points of great similarity
- Real algorithms for doing recursive or direct placement
- Recursive: $\mathbf{2}$ most famous heuristics: K\&L, F\&M

VWhat's later still (part III)

- Direct: classical quadratic formulation + Tsay-style legalization

Copyright Notice

© Rob A. Rutenbar 2001

All rights reserved.
You may not make copies of this material in any form without my express permission.

Where Are We?

- Physical design--placement via recursive, direct methods

	M	T	W	Th	F	
Aug		28	29	30	\|3]	I
Sep	3	4	5	6	7	2
	10	[1]	12	13	14	3
	17	18	19	20	21	4
	24	25	26	27	28	5
Oct		2	3	4	5	6
	8	9	10	II	12	7
Midsem	15	16	17	18	19	8
break	22	23	24	25	26	9
	29	30	31	II	2	10
Nov	5	6	7	8	9	11
	12	13	14	15	116	12
Thnxgive	19	20	21	22	23	13
	26	27	28	29	30	14
Dec	3	4	5	6	7	15
	10	II	12	13	14	16

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs \& apps

Deadlines

\checkmark Project2

- November 8 (next THU)
- Email us your website URL
\checkmark Homework 4 (still TBD on the .pdf on website)
- Propose: Nov 15 (Thu in class)
- Paper \#2
- Propose Nov 13 (Tue in class)
- Decided for this one to still be written - we'll do PPT for Paper3

What's left in 760

- HW5 (layout, timing), HW6 (geometric data structs, short)
- Project 3 (a REAL floorplanner - pay attn to last prob on HW4!)
- Paper 3 - something about layout

Recursive Placement: Min-Cut

- Basic idea
- The "simplest" placement decision you can make is: cut the chip into 2 pieces, partition gates over the $\mathbf{2}$ sides, minimize wiring in between
- Can continue doing this recursively with results of each partition step

All the gates

Ist cut

2nd cut

3rd cut...

Abstract Problem To Solve: Partitioning

\Partition the gates between 2 regions so that

- Capacity (\# of gates allowed) on each side is not exceeded
- Cost (i.e., the number) of wires across the cut is minimized
- Classical problem is bipartitioning

Note: Its Very Easy to Do this Poorly

\checkmark Example capacity constraint: $<=600 \mathrm{~K}$ gates per side

- Capacity constraint: <= 500K gates/side
- IO constraint: <=200 "pins" == connections on each side

Netlist. I,000,000 gates

Good...

Solution Style: Iterative Improvement

Bipartitioning Algorithms

- Kernighan-Lin

- Most famous partitioning heuristic, core of all others
- Right idea -- but too slow
- Aside: Yes, that Kernighan, of C-UNIX fame; this was his PhD thesis...

Viduccia \& Mattheyses

- Start with Kernighan-Lin (K-L), but made it fast
- Clever data structure, and some very minor tweaks make the algorithm linear $O(n)$ for n gates for one improvement pass
- Core of most serious partitioners today
- Aside: fi-DOO-chi-uh and muh-TEE-sis, 2 guys at GE Labs in early 1980s

K\&L Partitioning Model

- Minimize total sum of costs of nets across cut
- Each net has a cost cij, and we assume 2 n gates, to be partitioned equally into \boldsymbol{n} gates on each side of the cut

K\&L Improvement Procedure

0. Start with any (random) partition

1. Swap al and bl and lock them in place--they cannot swap again

I. Identify al• in A, bl• in B so that swapping al, bl gives maximum gain

2. Continue: Identify $\mathbf{a} 2, \mathrm{~b} \mathbf{b} \cdot$ so that swapping a2, b2 gives max gain...

© R. Rutenbar 2001, CMU 18-760, Fall01 11

K\&L: Critical Ideas

\checkmark Gain

- Gain is the change in cost that results from swapping one gate in the Aside with one gate in the B-side.
- Compute it as $\underbrace{\sum_{\text {cut }} \text { cij }}_{\begin{array}{c}\text { After } \\ \text { swap }\end{array}}-\underbrace{\sum_{\text {cut }} \text { cij }}_{\begin{array}{c}\text { Before } \\ \text { swap }\end{array}}$
- Be greedy, but persevere
- Always do the very best next swap (biggest Gain number) you can
- Do this swap even if it's negative, ie, even if it makes the partition worse
- So, the swap to pick is the strictly biggest gain:
\triangleright Biggest positive gain (makes cut better)
\triangleright Smallest (closest to 0) negative gain (makes cut the least worse)
- Do all n swaps
- ...ie, swap until nothing is left to swap.

K\&L Example

Starting partition

After the Ist swap

After the 2nd swap

Continue...

K\&L Example

- Keep going until all n pairs swapped

\ New problem: How many swaps should we keep?
- Makes no sense to do them all--this just reverses A and B!
- What the best set of all these swaps the maximizes overall gain?
- This is the next really clever part of K\&L...

K\&L: Picking Swap Sequence

V Important result

- Gain from doing swaps $1,2, \ldots k$ in sequence is $G_{k}=\sum_{i=1}^{k} g i$
- Gk is NOT monotonic function of k --it has hills \& valleys

\checkmark Interpretation:

- Good to do some locally bad swaps, to get to globally better answer
- This is a particular form of "hill-climbing"

K\&L: Doing the Swaps

\checkmark Interpretation:

- We will commit to do these k swaps, since they MAXIMIZE gain

K\&L Procedure

V So, what do we actually do?

- Evaluate all n swaps, maximizing the gain on each swap
- (Remember: gain may be negative on some swaps--this is OK)
- After all n swaps done, find k that gives best $G_{k}=\sum_{i=1} \mathbf{g i}$
- Commit the swaps al,bl \& a2,b2 \& a3,b3 ... \& ak,bk
- This completes one "improvement pass" of K\&L

K\&L overall

- Just keep doing improvement passes until it's not getting better

K\&L: Why It Works

Dense, interconnected cluster of gates on the B side. Really wants to be on the \mathbf{A} side...

But as you start swapping individual gates over to B, intermediate results look really bad -- you suddenly are splitting that dense cluster across partitions...

K\&L: Why It Works

But, eventually the whole cluster ends up on the A side, and overall this is the better solution for partition

\checkmark Hill climbing is critical

- By looking at all possible max gain swaps...
- ...and then picking the best sequence of max gain swaps...
- ..while tolerating individual swaps that are bad (negative)
- ...you can get a much better overall solution

K\&L: Quality \& Complexity

\checkmark How well does K\&L work?

- Fabulous. Amazingly good (with respect to what came before it)
- The "be greedy but persevere" idea is a very famous idea

- How fast does K\&L run

- Not.
- Why? How do we select the "swap with best gain"?
- It's possible to tag every gate with some partial numerical info that can be used to calculate a single gain for a single swap, quickly
- Still need to find the best: intrinsically requires sorting the gates by these numerical tags
- Sort of n points is $\mathbf{O}(\mathrm{n}$ logn), but we do this n times, as:
$(n \log n)+(n-I \log n-1)+(n-2 \log n-2)+\ldots+(2 \log 2)+(I \log I)$
Ist pair 2nd pair 3rd pair next to last last pair
- This sum is $O\left(n^{2} \log n\right)$. Ouch, for big n.

Improving K\&L: Fiduccia \& Mattheyses

- F\&M: Keeps good parts of K\&L
- Iterative improvement, with multiple passes, as before
- Hill-climbing, selecting best swap sequence

VF\&M: New ideas

- Better data structure for finding what to swap for max gain
- Clever accounting for what needs to get updated after cell moves
- Gates not just points anymore: they have size

F\&M Basics

V New constraint: Balance criterion

- Each cell i now has size $s(i)$, so just having same \# of cells in each partition is not enough, we need better defn of "balance"

- Balance criterion: want $|A| /(|A|+|B|) \approx r$ for some $0<r<=1$
- Ideally want r around I/2, but doesn't have to be exactly I/2
- Typically, allow r to be in a range, for example: r in [0.3, 0.7$]$
- User gets to pick this range of r

F\&M Procedure: Skeleton

gain = reduction in \# nets cut by partition

v Hard stuff: Choose best cell? Update gains?

F\&M: Finding the Move of Max Gain

\checkmark Observation

$[-0.0$ Cell i has $p(i)$ pins, it can attach to at most p (i) distinct nets

If you relocate cell \mathbf{i}, the most you can affect the gain is $p(i)$
$-p(i)<=$ gain <= +p(i)

- We can generalize this
- Overall, the gain from any move is bounded by $|\max \{p(i)\}|$
- Suggests a data structure to exploit this...

F\&M: Finding Move for Max Gain

To choose cell to move for max gain

- To update if gains change

F\&M Bucket Data Structure

\checkmark How much time to find max gain move?

- Constant time, O(I), just look at maxGain slot in buckets
- Also, to maintain maxGain in constant time, assuming you have to know where all the cells are; again just some pointer hacking
- To move n cells, $F \& M$ is $\mathbf{O (n) , ~ K \& L ~ w a s ~} O\left(n^{2} \log n\right)$
- Big improvement!

- What's left?

- How to update all gains on all affected cells when we move one cell ?
- K\&L assumed this was $\mathbf{O (n)}$ for a single swap (you might to update all the cells), so was $O\left(n^{2}\right)$ to do all n swaps
- How do we improve on this?

F\&M Improvements: Net Criticality

\checkmark Defn: Distribution of a net n

Distribution of $n=(A(n), B(n))$

$$
=(\# \text { cells of } n \text { in } A, \# \text { of cells of } n \text { in } B)
$$

Example at left, distrib $=(3,2)$
\checkmark Defn: Critical net

- Net n with $(\mathrm{A}(\mathrm{n}), \mathrm{B}(\mathrm{n})$) critical if $\mathrm{A}(\mathrm{n})$ or $\mathrm{B}(\mathrm{n})=0$ or $=1$

F\&M Improvements: Net Criticality

- Critical nets -- who cares?
- Observation I: if you move I cell on critical net, you change the gain!
- Observation 2: if net not critical, no matter what cell moves, no change
- Result: Only cells on critical nets affect gain

Minor point

- Need to look at nets that were critical before you moved cell(i)...
- ...and nets that go critical after you move cell(i)
- Just a little more bookkeeping

F\&M: Using Criticality

- An important side effect from locking cells after move
- Nets can't stay critical forever!
- Eventually, cells on a net freeze their positions, so net can't contribute to further gain changes
- Example

$(3,1)$ critical

$(2,2)$ noncritical

F\&M: Net Updates

\checkmark Defn: Net Update

- Net update is the process of scanning all the cells on net ito see if they are critical (ie, are they connected to any other critical nets?)
 update scans is just proportional to how many cells are attached to this net

\checkmark Key result

- You never have to do more than a constant number of updates on any net in one improvement pass of F\&M. Constant $=4$, it turns out
- Little nets (2,3 cells) after few moves: all their cells freeze
- Big nets (>=4 cells) after few moves: they freeze to be noncritical

F\&M: Complexity (Informal)

\How much work to do 1 improvement pass?

- Recall, 1 pass means start with all cells free, do max-gain moves until no cells are free--they are all locked in one side of partition
- We know that updating maxGain is $\mathrm{O}(1)$
- What about updating all cell gains on affected cells after a move?

Look at nets...

```
- Total work \(=\Sigma_{\text {all nets } i}\) (work per net \(\left.i\right)\)
    \(=\Sigma_{\text {all nets } i}\) (work/update of net \(i \quad X \quad \#\) of updates on \(i\) )
    \(<=\sum_{\text {all nets } i}\) (work / update of net \(i \quad X\) constant)
    \(<=\) constant \(\times \Sigma_{\text {all nets } i}\) (work / update of net \(i\) )
    <= constant \(X \sum_{\text {all nets } i}\) (\#cells on net \(i\) )
    <= constant \(X\) ( total number of cell pins in entire netlist)
    <= constant' X (\#cells in the netlist)
    = linear in problem size, \(\mathbf{O}(\mathrm{n})\) (woohoo!)
```


F\&M: Summary

- Complexity of 1 pass is linear in problem size
- A very important and practical result
\checkmark Impact
- Everybody liked results K\&L was capable of getting
- F\&M preserves the overall improvement strategy, but makes it extremely fast, linear in problem size
- Can attack very large netlists with F\&M, ~IM cells
- This is now one of the default, standard ways to do big partitioning probs

- How about today...?

- Additional set of ideas improves this further, uses some hierarchical clustering, and some other clever stuff.
- Best tool around today is called "hMetis", from U Minnesota. You can get it from their web page; like CUDD, widely used, easy to use.

Back to Recursive Placement via Min-Cut

- Think of repeated partitioning process as a "hierarchy" of cuts
- Direction of each cuts is really arbitrary; shown alternating H, V here

Can keep cutting until just I gate/region, or can quit with <=K gates/region

Back to Recursive Partitioning

- How do people actually apply partitioning to placement?
- Start: initial netlist of gates + wires;

Let pQueue be a queue of regions on chip (from cut hierarchy) that we still need to partition;
pQueue = <whole chip, entire netlist>;
while(pQueue not empty) \{
$<R, N\rangle=$ pop region and netlist for gates in this region from pQueue; choose a cut direction for region: horizontal or vertical; decide the balance criterion you want to hit (ie, look where you think you want to put the cutline on your placement grid);
execute partition algorithm on <R,N> to yield 2 new partitions, <A,Na>, <B,Nb>
if(region A of $<\mathrm{A}, \mathrm{Na}$ > is big enough to keep cutting) push <A, Na> onto pQueue;
if(region B of $<B, N b>$ is big enough to keep cutting) push <B, Nb> onto pQueue;
\}

Recursive Cutting Example

Recursive Cutting Example

<R3, N3> Mincut creates 2 child regions, R7, R8, with their own local gate netlists, which we PUSH on Queue for later (recursive) mincut

pQueue

Congestion vs Wirelength

\ Mincut optimizes congestion

- It tries directly to minimize number (or sum of costs on) wires across all cuts as we recursively go down the cut "hierarchy"
- This "tends" to minimize wirelength...

V ...but, it doesn't really guarantee to minimize it

- There are some particular problem cases that mincut can create
- Luckily, there are also some decent fixes
-We'll look at just one: Terminal Propagation
- By Dunlop \& Kernighan

Partition Optimizations

Terminal propagation

- Now a standard technique, introduced by Dunlop and Kernighan of Bell Labs, for use with Kernighan-Lin partitioning improvement
- Idea: enforce some "coupling" between objects that are connected, but which have ended up in different regions after a hierarchy of slicing cuts

Oops! Cut was good, but global wiring was ignored

Terminal Propagation

- Basic idea

- Represent, at least crudely, what's going on in the other partitions while you do each cut
- Need somehow to create/represent a view of how global wires are evolving across cuts

Bad partition, it lengthens this already long global wire

Better partition, it keeps modules on global wire more local

Terminal Propagation

\checkmark Mechanics

- You try to build a crude "geometric wire model" for the wires that are going across the other cuts, and use this to bias your current partitioning task to minimize spreading connected objects across the the current cut
- Example

Terminal Propagation: Mechanics

- Dunlop \& Kernighan used a simple Steiner wire model

Ignore cells actually in the region you are partitioning, and lump all other cells in other regions at the geometric center of their respective region

Quickly build a decent Steiner tree wiring that connects all these center pts

Aside: Steiner Wire Models

V Recall: many wire estimation models for a given set of points

- Idea is to estimate the length or shape of the wire, without having to actually call an expensive detailed router to route it

Half-perimeter of the the smallest bounding box is most common scalar estimator

Minimum Manhattan spanning tree is very practical.

Can do this in $\mathbf{O}\left(\mathbf{n}^{2}\right)$ for n points

Minimum Steiner tree is the best you can get, but very expensive to approximate

Back to Terminal Propagation

V Dunlop \& Kernighan used a really simple Steiner heuristic

- Idea is to get a rough idea of "where" the global portion of wires connected to objects inside a "live" partition wants to go

Now, where the wire crosses the boundary of the
 current region, mark a pseudo pin

Terminal Propagation

Use these pseudopins to "bias" the current partition

- ie, model them as fixed, unswappable modules on each side of the cut, with high-weight connections to them
- Use this to alter swapping cost function to favor swaps that keep modules close to their pseudopins

Recursive Min-cut Placement: Summary

Relies on good bipartitioning algorithms for netlists

- Cut the netlist into 2 parts, minimizing (number or cost of) wires crossing the cut between the 2 parts
- K\&L was the first good quality, practical partitioning algorithm
- F\&M made it fast for large-scale IC designs

\checkmark ASIC placement

- Min-cut optimizes congestion directly (wires crossing cuts)
- Min-cut only indirectly optimizes netlength
- Tricks for introducing some notions of "net length" into min-cut placer
- Practical for > IM gate netlists, very fast, some recent innovations based on smart clustering (hMETIS) improve it over F\&M
- Usage on the rise in recent high-end placers for huge ASICs

