(Lec 9) Multi-Level Min III: Role of Don't Cares

What you know

- > 2-level minimization a la ESPRESSO
- Multi-level minimization:
 - > Boolean network model,
 - > Algebraic model for factoring
 - > Rectangle covering for extraction

What you don't know

- > Don't cares in a multi-level network are very different
- > They arise naturally as part of the structure of the network model
- > They can help a great deal in simplifying the network
- > They can be very hard to get, algorithmically

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 1

Where Are We?

▼ In logic synthesis--how *don't cares* are now *very* different beasts

	Μ	Т	W	Th	F	
Aug	27	28	29	30	31	1
Sep	3	4	5	6	7	2
	10		12	13	14	3
Oct	17	18	19	20	21	4
	24	25	26	27	28	5
		2	3	4	5	6
	8	9	10	11	12	7
	15	16	17	18	19	8
	22	23	24	25	26	9
Nov	29	30	31	1	2	10
	5	6	7	8	9	11
	12	13	14	15	16	12
Thnxgive	19	20	21	22	23	13
	26	27	28	29	30	14
Dec	3	4	5	6	7	15
	10		12	13	14	16

Introduction Advanced Boolean algebra JAVA Review Formal verification 2-Level logic synthesis Multi-level logic synthesis Technology mapping Placement Routing Static timing analysis Electrical timing analysis Geometric data structs & apps

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 3

Readings/Deadlines/Projects

De Micheli

Section 8.4 is about don't cares in multilevel model

Deadlines

- ► Today, Thu Oct 11: Paper I Review, Rudell's Dynamic Ordering due
- ► Thursday Oct 18: HW3 (2-level, multi-level synthesis) due
 - > As always, check webpage for bugfixes, updates...
 - D There are some bugs in eqns for Prob #1, fixed shortly... The state diagrams are correct as is.

■ Project #2

We'll do the overview next Tuesday

Don't Cares: 2-level

In basic digital design...

- ▶ We told you these were just input patterns that could never happen
- This allowed you to do more simplifications, since you could add a 1 or 0 to the Kmap for that input depending on what was easier to simplify
- ► Standard example: BCD incrementer circuit

- But, we've already seen these!
- External global CDCs: come from outside for entire network, like b=1 c=1 d=1 is impossible, in our example
- ▶ Internal local CDCs: just patterns that cannot appear at any vertex

=
$$(\forall \text{ vars not inputs })(\sum_{\text{vertex}} (\text{local SDCs}) + \text{ext. global CDC})$$

■ SDCs versus CDCs ...?

- **SDCs:** think of as belonging to each internal wire in network
- CDCs: think of as belonging to each internal vertex in network

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 39

Observability Don't Cares ■ ODCs belong to *each* output of a vertex in network ▶ Patterns that will make this output not observable at network output ▶ "Not observable" means a change 0<->1 on this vertex output doesn't not change ANY network output, for this pattern New example Note--new example now... х T = xy' + x'yy/ F = xy +Tz' + T'y' Patterns that make F insensitive to T.... • Look at ODC_{T} for output wire of vertex T © R. Rutenbar 2001, CMU 18-760, Fall 2001 40

