(Lec 9) Multi-Level Min III: Role of Don't Cares

- What you know
- 2-level minimization a la ESPRESSO
- Multi-level minimization:
\triangleright Boolean network model,
\triangleright Algebraic model for factoring
\triangleright Rectangle covering for extraction

V What you don't know

- Don't cares in a multi-level network are very different
- They arise naturally as part of the structure of the network model
- They can help a great deal in simplifying the network
- They can be very hard to get, algorithmically

Copyright Notice

© Rob A. Rutenbar 2001

All rights reserved.
You may not make copies of this material in any form without my express permission.

Where Are We?

I In logic synthesis--how don't cares are now very different beasts

M	T	W	Th	F		
Aug 27	28	29	30	\|3		I
Sep 3	14	5	6	7	2	
10	III	12	113	14	3	
17	18	19	20	21	4	
24	25	26	27	28	5	
Oct 1	2	3	4	5	6	
8	9	10	II	112	7	
15	[6	17	18	19	8	
22	23	24	25	126	9	
29	130	31	I	2	10	
Nov 5	6	7	8	9	11	
12	13	14	115	116	12	
Thnxgive 19	120	21	22	23	13	
26	27	28	29	30	14	
Dec 3	14	5	6	7	15	
10	11	12	113	14	16	

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs \& apps

Readings/Deadlines/Projects

\checkmark De Micheli

- Section 8.4 is about don't cares in multilevel model
\checkmark Deadlines
- Today, Thu Oct II: Paper I Review, Rudell's Dynamic Ordering due
- Thursday Oct I8: HW3 (2-level, multi-level synthesis) due
\triangleright As always, check webpage for bugfixes, updates...
\triangleright There are some bugs in eqns for Prob \#I, fixed shortly... The state diagrams are correct as is.
- Project \#2
- We'll do the overview next Tuesday

Don't Cares: 2-level

- In basic digital design...

- We told you these were just input patterns that could never happen
- This allowed you to do more simplifications, since you could add a I or 0 to the Kmap for that input depending on what was easier to simplify
- Standard example: BCD incrementer circuit

Patterns b3 b2 b1 b0 = 1010, 1011, 1100, 1101, 1110, 1111 cannot happen

Don't Cares: Multi-level

To say this differently
In basic 2-level designs somebody told you what inputs wouldn't happen...
...and you just believed them!

What's different in multi-level?

- There can still be these sorts of don't cares at the primary inputs of the Boolean logic network....
- ...but there can also be don't cares arising from structure of the network
- These latter kind are very useful for simplifying the individual vertices in the Boolean logic network (ie you call ESPRESSO which can handle 2level don't cares)
- But, you have to go find these don't cares explicitly

Informal Tour of DCs in Multilevel Networks

- Suppose we have a Boolean network...
- And we are looking at node " f " in that network

V Can we say anything about don't cares for node f?

- NO
- We don't know any "context" for surrounding parts of network
- As far as we can tell, all patterns of inputs (X,b,Y) are possible

Informal Multilevel DC Tour

V OK, suppose we know this about input X to f

- Node X is actually $\mathbf{a} \cdot b$
- Now can we say something about DCs for node f...?
- YES

Informal Multilevel DC Tour

- Go list all the input/output patterns for node \mathbf{X}

Informal Multilevel DC Tour

V Impossible abX patterns => impossible $X b Y$ patterns?

Informal Multilevel DC Tour

\Impossible X b Y patterns give us DCs for node f

- Change how we would want to simplify node f (it's Kmap)

Informal Multilevel DC Tour

VOK, what if we now know $Y=b+c$ as well

- Can do this again at \mathbf{Y}...are there impossible patterns of bc Y ?

Informal Multilevel DC Tour

VOK, can we (again) get impossible patterns on $X b$ Y?

Informal Multilevel DC Tour

\OK, do these change how we'd simplify inside f?

Informal Multilevel DC Tour

- OK, now suppose f is not a primary output, Z is...
- Question: when does a change in the output of node f actually propagate through to change the primary output \mathbf{Z}, ie, the output of the overall Boolean logic network
- Or, reverse question: when does it not matter what f is...?
- Let's go look at patterns of $f \mathbf{X} \mathbf{d}$ at node Z...

Pls

Informal Multilevel DC Tour

Informal Multilevel DC Tour

\quad OK, can we use this $X=0$ DC pattern to simplify f more?

Informal Multilevel DC Tour

- Hey, look what happened to f node...
- Due to context of surrounding nodes, it disappeared!

Informal Multilevel DC Tour

- OK, suppose instead that $\mathrm{PO} Z=\mathrm{f}+\mathrm{X}+\mathrm{d}$ (OR not AND)
- What changes?
- Answer: no patterns at f inputs that make Z insensitive to changes in f
- There are still impossible patterns of ($\mathrm{f} \mathbf{X}$ d) but you cannot specify any of them exactly only knowing the ($\mathbf{X} \mathbf{b} \mathbf{Y}$) inputs to f
- f doesn't dissappear, it still simplifies to $f=b+X$

V Network context matters a lot here!

Pls

Formal View of These DCs

V Overall, there are 3 types of formal DCs...

- Satisfiability don't cares
\triangleright Patterns that can't occur at the inputs to a vertex...
\triangleright... because of internal structure of multi-level logic
- Controllability don't cares
\triangleright Global, external: patterns that can't happen at primary inputs to our overall Boolean logic network
\triangleright Local, internal: patterns that can't happen at inputs to a vertex
- Observability don't cares

Patterns at input of a vertex that prevent that outputs of the network from being sensitive to changes in output of that vertex
Pattern that "mask" outputs

Let's see if we can clarify where these each come from...

Don't Care Types: Satisfiability

- Satisfiability Don't Cares

- Happen because of structure of Boolean Logic Network
- We don't treat the network as one big logic diagram, but rather, as a set of separate, connected logic blocks (vertices)
- SDCs specify the constraints on these internal connections
\checkmark Example
- Start with just one vertex in network

SDCs

V Now, assume we extract some subexpressions

- Extract $\mathrm{X}=\mathrm{a}+\mathrm{b}, \quad \mathrm{Y}=\mathrm{a} \bullet \mathrm{b}$
- This changes structure of network
- There are now new nodes, feeding node that creates f

SDCs

\checkmark Notice

- In the restructured network, f has different inputs, and so possibly now a different "best" simplification
- What about don't cares?

SDCs

\checkmark These patterns are the satisfiability DCs

- Easiest to think of them as a separate set of impossible patterns "belonging to" each internal wire in a Boolean Logic Network
- They are purely structural in origin: outputs can't take values that are not equal to (ie, don't satisfy) what the attached vertex creates

never see $a b X=001,010,100110$

Cannot have $\mathbf{Y}!=\mathbf{a} \bullet \mathbf{b}$

never see $a b Y=001,011,101110$

Aside: How Will We Actually Represent DCs?

- Some confusing notation and terminology
- You're probably used to seeing don't cares just listed in the truth table
- But, the way we will usually represent these is either:
\triangleright As a set of patterns of 0 s Is on a node's inputs that cannot happen
\triangleright As a function of these inputs that makes a I just for those patterns that cannot happen; $D C_{G}==1$ just for impossible patterns for G

Aside: Representing Don't Cares

Representation

- Will even frequently see the DC function actually written in terms of an SOP cover, a Boolean expression

Back to SDCs

V SDC "function" for wire is just a cover of illegal patterns

SDCs: How Do We Actually Use Them?

- What impact on simplification of f...?
- Look at SDCs for each input wire x and y
$S D C_{X}=a^{\prime} b^{\prime} X+a^{\prime} b X^{\prime}+a b^{\prime} X^{\prime}+a b X^{\prime}$
=> impossible patterns of $\mathbf{a b} \mathbf{X}$

$$
\begin{aligned}
& {S D C C_{Y}}^{=}=a^{\prime} b^{\prime} Y+a^{\prime} b Y+a b^{\prime} Y+a b Y^{\prime} \\
& \quad=>\text { impossible patterns of } a b Y
\end{aligned}
$$

\checkmark Oops! Problem

- SDCs in terms of $\mathbf{a b X}$ and $\mathrm{ab} Y$
- But, f is now only a function of a c d and X Y
- How to resolve?

SDCs

N Need to quantify out the "b" in SDCs, but how?

- Just try each way and see what happens, for insight
- Recall: given $f(x, y, z, w)$
$\triangleright(\exists x f)(y, z, w)=f_{x}+f_{x}$, (existential quantification)
$\triangleright(\forall x f)(y, z, w)=f_{x} \cdot f_{x}$ (universal quantification)

\checkmark In English

- Existential quantification: removes var x, resulting function is true for (y, z, w) whenever there is some pattern, either $(x=I, y, z, w)$ OR ($x=0, y, z, w)$ that made original $f==I$
- Universal quantification: removes var x, resulting function is true for (y, z, w) whenever both patterns $(x=I, y, z, w)$ AND ($x=0, y, z, w)$ made original function $f==1$

SDCs

Try quantifying wrt b , both ways...

SDCs

\checkmark Which is right?

never see $a b X=001,010,100110$

$$
Y=a \cdot b
$$

$\left(\exists \mathrm{b} \operatorname{SDC}_{\mathrm{Y}}\right)(\mathrm{a}, \mathrm{Y})=\mathrm{Y}+\mathrm{a}$
$\left(\forall \mathrm{b} \mathrm{SDC}_{\mathrm{Y}}\right)(\mathrm{a}, \mathrm{Y})=\mathrm{a}^{\prime} \mathrm{Y}$

SDCs

- Aside: why universal quantification does the trick
- Because you want to know which patterns, independent of the value of the var(s) you get rid of, are still impossible
- The "independent of value of var" part is the key, it's what universal quantification does
$\left(\exists \mathrm{b}^{\prime} \mathrm{SDC}_{\mathrm{x}}\right)(\mathrm{a}, \mathrm{X})=\mathrm{X}^{\prime}+\mathrm{a}$ ' doesn't work...

$\left(\forall \mathrm{b} \operatorname{SDC}_{\mathrm{x}}\right)(\mathrm{a}, \mathrm{X})=\mathrm{aX}$ ' is right

SDCs

V So, how do you actually compute SDCs?

- Easy, do it for each output wire from each Boolean node

- You want an expression that's $==1$ when \mathbf{X} != (expression for \mathbf{X})
- But this is just \square
Remember (expression for \mathbf{X}) doesn't have \mathbf{X} in it!!
- Try it on something simple to convince yourself

SDCs

Simplify...

SDC $=X \oplus(a b+c)=$	
© R. Rutenbar 2001,	
CMU 18-760, Fall 200134	

SDCs

\checkmark How to deal with SDCs on many wires into vertex?

- In other words, how do I actually use SDC $_{X}$ SDC $_{Y}$ to simplify f?
- Answer: just OR the SDCs for each input wire to vertex, then quantify away vars that are not inputs to f

=patterns that cannot occur on f inputs

SDCs

\checkmark Try it and see

- Note we can ignore SDCs on a, c, d inputs to f since they are primary inputs (ie, $\mathbf{a} \oplus($ expression for $\mathbf{a})=\mathbf{a} \oplus \mathbf{a}=0$, etc.

SDC $=(\forall \mathrm{b})([\mathrm{X} \oplus(\mathrm{a}+\mathrm{b})]+[\mathrm{Y} \oplus \mathrm{ab}])=$
$([X \oplus(a+b)]+[Y \oplus a b])_{b=1} \cdot([X \oplus(a+b)]+[Y \oplus a b]) \quad b=0$

SDCs

Twist: but what if there are actually DCs for network inputs, impossible external patterns for abcd?

- Example: suppose $b=1 c=1 d=1$ can never happen
- How to handle for computing SDCs for ?
- Answer: just OR in cover for these DCs in SDC expression

SDCs

- Notice this works...
- Just look at the new terms we added to SDC: (a'cdX + acdX' + cdY)
- Pick a'cdX as example
$\triangleright==>\mathrm{a}=0 \mathrm{c}=1 \mathrm{~d}=1 \mathrm{X}=1$ is impossible

Correct! This can only happen for input abcd $=0111$ which is impossible

Controllability Don't Cares

\checkmark Defines those input patterns that cannot happen for specific vertices, or for entire network

- But, we've already seen these!
- External global CDCs: come from outside for entire network, like $\quad b=I c=I d=I$ is impossible, in our example
- Internal local CDCs: just patterns that cannot appear at any vertex

$$
=(\forall \text { vars not inputs })\left(\sum_{\substack{\text { vertex } \\ \text { inputs }}}(\text { local SDCs })+\text { ext. global CDC }\right)
$$

- SDCs versus CDC

 ...?- SDCs: think of as belonging to each internal wire in network
- CDCs: think of as belonging to each internal vertex in network

Observability Don't Cares

- ODCs belong to each output of a vertex in network
- Patterns that will make this output not observable at network output
- "Not observable" means a change $0<->$ I on this vertex output doesn't not change ANY network output, for this pattern
- New example

ODCs

- In English...

- ODC for T are patterns of inputs to the vertex for T (patterns of x, y) such that we can compute F without caring about what T is
- Since $F=x y+T z$ ' + T'y', observe
\triangleright If $x=1 y=1$ then $F=I+T z^{\prime}+T^{\prime} y^{\prime}=I \quad$ = independent of T
\triangleright Note there are patterns of other vars that do this too:
\triangleright If $z=I y=I$ then $F=x y+T \cdot 0+T \cdot \bullet 0=x y \quad=i n d e p e n d e n t$ of T
\triangleright If $z=0 y=0$ then $F=x y+T \cdot|+T \cdot|=x y+T+T^{\prime}=I \quad$ indep. of T
- So, our guess is that $O D C_{T}=x y$
\triangleright This is the only pattern that depends just on vars input to T
\triangleright For this pattern, network output insensitive to changes in \mathbf{T}

How to compute, mechanically?

ODCs

When is network output F insensitive to internal var X ?

\checkmark Be precise

- Insensitive means X changes $=>$ but F never changes
- More precisely: if we specify F as function of X, then $F_{X}=F_{X}$,
- So, what patterns of the other inputs to F cause $F(\ldots X=0$.... $)=F(. . . X=1$...)?
- When these patterns are applied, changing X does not ever matter to output at F
- But we've already seen something close to this...

ODCs

V Boolean difference, $\partial \mathbf{F} / \partial \mathbf{X}$

- Defined as $\partial \mathbf{F} / \partial \mathbf{X}=\mathbf{F}_{\mathbf{X}} \oplus \mathbf{F}_{\mathbf{X}}$,
- Recall we observed that patterns that make $\partial \mathbf{F} / \partial \mathbf{X}=\mathbf{I}$ correspond to patterns where a change in X causes some change in F

\checkmark Stated differently
- Boolean difference $\cdot \partial \mathbf{F} / \bullet \partial \mathbf{X}$ is a function that is I for those patterns that make \mathbf{X} observable

ODCs

But we want patterns that make vertex output X unobservable, since we want don't care patterns

- So, if $\partial \mathbf{F} / \partial \mathbf{X}$ is patterns that make \mathbf{X} observable
- ...then $(\bar{\partial} \mathbf{F} / \partial \mathbf{X})$ is patterns that make \mathbf{X} unobservable
- Back to our example: want to look at $\overline{(\partial \mathbf{F} / \partial \mathrm{T})}$ here

$$
\overline{\partial F / \partial T}=\bar{F}_{T} \oplus F_{T^{\prime}}=
$$

ODCs

$\nabla^{\text {So }} \mathrm{ODC}_{\mathrm{T}}=\mathrm{xy}+\mathrm{xz}{ }^{\prime}+\mathrm{y}^{\prime} \mathrm{z}^{\prime}+\mathrm{x}^{\prime} \mathrm{yz}^{\prime}$

- But, same problem: can't use this to simplify vertex for \mathbf{T} since \mathbf{T} is only a function of x and y
- What to do?
- Same as before: universal quantification over vars not input to \mathbf{T}
- In this case, want $(\forall z)\left(x y+x z^{\prime}+y^{\prime} z^{\prime}+x^{\prime} y z\right)=x y$ which is correct

ODCs

More general: what if many network outputs?

- Only patterns that are unobservable at ALL outputs can be ODCs

Don't Cares, In General

Why is getting these things so very hard?

Because real networks are big, and the vertex X you want to simplify may be very far from the primary inputs, and primary outputs

- Inputs to your vertex are function of a lot of stuff
- Network outputs are functions of your vertex and lots of other stuff
- Representing all this stuff can be explosively large, even with BDDs

Getting Network DCs

\checkmark How do people do it

- In general, they don't
\triangleright Usually suffice with getting the local SDCs, which just requires looking at outputs of antecedent vertices and computing the SDC patterns, which is easy (no big search)
\triangleright There are also incremental, vertex-by-vertex algorithms that walk the network to compute full CDC set for X, and full ODC set for X, but these can be very expensive in space
- Also, some tricks called FILTERS
\triangleright You want to find patterns you can use as don't cares to simplify vertex X
\triangleright Instead of finding all such DC patterns, can restrict search to avoid patterns that cannot possibly be useful to simplify X
\triangleright Such algorithms called "filters" -- they get rid of DCs you don't need
- See De Michelli for details about all this stuff

For us, knowing the straightforward brute force formula is OK

Example

\checkmark Now know enough to do this

- Simplify node X inside this network
- Assume pattern a=0 d=0 never occurs at network input

\checkmark How?
- Compute SDC for X, including external global DC=a'd'
- Compute ODC for \mathbf{X} by doing ($\partial \mathbf{Q} / \partial \mathbf{X}$)'
- You get to use anyplace SDC $_{x}+$ ODC $_{x}==I$ as a don't care for X

Summary

V New kinds of don't cares in multi-level networks

- Byproducts of the network model
- It's not all one big function, it's a bunch of little functions (vertices) connected by wires
- Satisfiability DCs: structural in origin, can't have output of a vertex not equal to the expression for that vertex
- Output DCs: some patterns make vertex output unobservable at network outputs
- SDC + ODC: for any given vertex, can use this expression as places for don't cares to simplify the vertex function

\checkmark In practice

- Very hard to get these, esp ODCs (see the book)
- Usually just use the local SDC from antecedent vertices
- Also, there are algorithms (filters) that can just go find useful don't cares for simplification

