
Page 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 1

(Lec 9) Multi-Level Min III: Role of Don’t Cares(Lec 9) Multi-Level Min III: Role of Don’t Cares

What you know
2-level minimization a la ESPRESSO

Multi-level minimization:

Boolean network model,

Algebraic model for factoring

Rectangle covering for extraction

What you don’t know
Don’t cares in a multi-level network are very different

They arise naturally as part of the structure of the network model

They can help a great deal in simplifying the network

They can be very hard to get, algorithmically

© R. Rutenbar 2001, CMU 18-760, Fall 2001 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001, CMU 18-760, Fall 2001 3

Where Are We?Where Are We?

In logic synthesis--how don’t cares are now very different beasts

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 4

Readings/Deadlines/ProjectsReadings/Deadlines/Projects

De Micheli
Section 8.4 is about don’t cares in multilevel model

Deadlines
Today, Thu Oct 11: Paper 1 Review, Rudell’s Dynamic Ordering due

Thursday Oct 18: HW3 (2-level, multi-level synthesis) due

As always, check webpage for bugfixes, updates…

There are some bugs in eqns for Prob #1, fixed shortly…
The state diagrams are correct as is.

Project #2
We’ll do the overview next Tuesday

Page 3

© R. Rutenbar 2001, CMU 18-760, Fall 2001 5

Don’t Cares: 2-levelDon’t Cares: 2-level

In basic digital design...
We told you these were just input patterns that could never happen

This allowed you to do more simplifications, since you could add a 1 or 0
to the Kmap for that input depending on what was easier to simplify

Standard example: BCD incrementer circuit

BCD
Increment

b3

b2

b1

b0

c3

c2

c1

c0

carry

b3b2

b1b0
00 01 11 10

00

01

11

10

1

1

d

d

d

dd

d

Patterns b3 b2 b1 b0 = 1010, 1011, 1100, 1101, 1110, 1111 cannot happen

© R. Rutenbar 2001, CMU 18-760, Fall 2001 6

Don’t Cares: Multi-levelDon’t Cares: Multi-level

To say this differently
In basic 2-level designs somebody told you what inputs wouldn’t happen...

...and you just believed them!

What’s different in multi-level?
There can still be these sorts of don’t cares at the primary inputs of the
Boolean logic network....

...but there can also be don’t cares arising from structure of the network

These latter kind are very useful for simplifying the individual vertices in
the Boolean logic network (ie you call ESPRESSO which can handle 2-
level don’t cares)

But, you have to go find these don’t cares explicitly

Page 4

© R. Rutenbar 2001, CMU 18-760, Fall 2001 7

Informal Tour of DCs in Multilevel NetworksInformal Tour of DCs in Multilevel Networks

Suppose we have a Boolean network...
And we are looking at node “f” in that network

Can we say anything about don’t cares for node f?
NO

We don’t know any “context” for surrounding parts of network

As far as we can tell, all patterns of inputs (X,b,Y) are possible

f = Xb + bY + XY
f

X
b
Y Xb

Y
00 01 11 10

0

1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 8

Informal Multilevel DC TourInformal Multilevel DC Tour

OK, suppose we know this about input X to f
Node X is actually a•b

Now can we say something about DCs for node f...?

YES

f = Xb + bY + XY
f

Y

X = ab
X

b

a

PIs

POs

Page 5

© R. Rutenbar 2001, CMU 18-760, Fall 2001 9

Informal Multilevel DC TourInformal Multilevel DC Tour

Go list all the input/output patterns for node X

f = Xb + bY + XY
f

Y

X = ab
X

b

a

PIs

POs

a b X can it occur?

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 10

Informal Multilevel DC TourInformal Multilevel DC Tour

Impossible a b X patterns => impossible X b Y patterns?

f = Xb + bY + XY
f

Y

X = ab
X

b

a

PIs

POs

a b X can it occur?

0 0 0
0 0 1 NO
0 1 0
0 1 1 NO
1 0 0
1 0 1 NO
1 1 0 NO
1 1 1

X bY can it occur?

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Page 6

© R. Rutenbar 2001, CMU 18-760, Fall 2001 11

Informal Multilevel DC TourInformal Multilevel DC Tour

Impossible X b Y patterns give us DCs for node f
Change how we would want to simplify node f (it’s Kmap)

f = Xb + bY + XY
f

Y

X = ab
X

b

a

PIs

POs

Impossible patterns =
Xb

Y
00 01 11 10

0

1

Conclusion

1

1 1 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 12

Informal Multilevel DC TourInformal Multilevel DC Tour

OK, what if we now know Y = b+c as well
Can do this again at Y ...are there impossible patterns of b c Y ?

f = Xb + bY + XY
f

Y

X = ab
X

b

a

PIs

POs

Y = b + c
c

b c Y can it occur?

0 0 0
0 0 1 NO
0 1 0 NO
0 1 1
1 0 0 NO
1 0 1
1 1 0 NO
1 1 1

Y=

Y=

Page 7

© R. Rutenbar 2001, CMU 18-760, Fall 2001 13

Informal Multilevel DC TourInformal Multilevel DC Tour

OK, can we (again) get impossible patterns on X b Y?

f = Xb + bY + XY
Y

X = ab
X

b

a

PIs

Y = b + c
c

b c Y can it occur?

0 0 0
0 0 1 NO
0 1 0 NO
0 1 1
1 0 0 NO
1 0 1
1 1 0 NO
1 1 1

a b X can it occur?

0 0 0
0 0 1 NO
0 1 0
0 1 1 NO
1 0 0
1 0 1 NO
1 1 0 NO
1 1 1

X bY can it occur?

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 14

Informal Multilevel DC TourInformal Multilevel DC Tour

OK, do these change how we’d simplify inside f?

f = Xb + bY + XY
Y

X = ab
X

b

a

PIs

Y = b + c
c

X bY can it occur?

0 0 0
0 0 1
0 1 0 NO
0 1 1
1 0 0 NO
1 0 1 NO
1 1 0 NO
1 1 1

Xb
Y

00 01 11 10

0

1

Conclusion

1

1

1 1

Page 8

© R. Rutenbar 2001, CMU 18-760, Fall 2001 15

Informal Multilevel DC TourInformal Multilevel DC Tour

OK, now suppose f is not a primary output, Z is...
Question: when does a change in the output of node f
actually propagate through to change the primary output Z,
ie, the output of the overall Boolean logic network

Or, reverse question: when does it not matter what f is...?

Let’s go look at patterns of f X d at node Z...

f = Xb + bY + XY
Y

X = ab
X

b

a

PIs

Y = b + c
c

Z = f X d

PO
Z

f

d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 16

Informal Multilevel DC TourInformal Multilevel DC Tour

f = Xb + bY + XY
Y

X = ab
X

b

a

PIs

Y = b + c
c

Z = f X d

PO
Z

f

d

f X d Z does it change?

0 0 0
1 0 0
0 0 1
1 0 1
0 1 0
1 1 0
0 1 1
1 1 1

Patterns at input to f node
itself that are DCs just because
those patterns make Z output
insensitive to changes in f

X b Y

=

∆f

∆f

∆f

∆f

Page 9

© R. Rutenbar 2001, CMU 18-760, Fall 2001 17

Informal Multilevel DC TourInformal Multilevel DC Tour

OK, can we use this X=0 DC pattern to simplify f more?

f = Xb + bY + XY
Y

X = ab
X

b

a

PIs

Y = b + c
c

Z = f X d

PO
Z

f

d

Patterns at input to f node
itself that are DCs just because
those patterns make Z output
insensitive to changes in f

=>

Xb
Y

00 01 11 10

0

1

Conclusion

d d d

d11

© R. Rutenbar 2001, CMU 18-760, Fall 2001 18

Informal Multilevel DC TourInformal Multilevel DC Tour

Hey, look what happened to f node...
Due to context of surrounding nodes, it disappeared!

f =
Y

X = ab
X

b

a

PIs

Y = b + c
c

Z = f X d

PO
Z

f

d

Y

X = ab
X

b

a

Y = b + c
c

Z = X d

PO
Z

d

gone!

Page 10

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

Informal Multilevel DC TourInformal Multilevel DC Tour

OK, suppose instead that PO Z = f + X + d (OR not AND)
What changes?

Answer: no patterns at f inputs that make Z insensitive to changes in f

There are still impossible patterns of (f X d) but you cannot specify any
of them exactly only knowing the (X b Y) inputs to f

f doesn’t dissappear, it still simplifies to f = b + X

Network context matters a lot here!

f = Xb + bY + XY
Y

X = ab
X

b

a

PIs

Y = b + c
c

Z = f +X +d

PO
Z

f

d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 20

Formal View of These DCsFormal View of These DCs

Overall, there are 3 types of formal DCs...
Satisfiability don’t cares

Patterns that can’t occur at the inputs to a vertex...

... because of internal structure of multi-level logic

Controllability don’t cares

Global, external: patterns that can’t happen at primary inputs to
our overall Boolean logic network

Local, internal: patterns that can’t happen at inputs to a vertex

Observability don’t cares

Patterns at input of a vertex that prevent that outputs of the
network from being sensitive to changes in output of that vertex

Pattern that “mask” outputs

Let’s see if we can clarify where these each come from...

Page 11

© R. Rutenbar 2001, CMU 18-760, Fall 2001 21

Don’t Care Types: SatisfiabilityDon’t Care Types: Satisfiability

Satisfiability Don’t Cares
Happen because of structure of Boolean Logic Network

We don’t treat the network as one big logic diagram, but rather, as a
set of separate, connected logic blocks (vertices)

SDCs specify the constraints on these internal connections

Example
Start with just one vertex in network

f = ac + bc + abd + acd
f

a
b
c
d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 22

SDCsSDCs

Now, assume we extract some subexpressions
Extract X=a+b, Y = a•b

This changes structure of network

There are now new nodes, feeding node that creates f

f =Xc + Yd + acd
f

a
b
c
d

X = a+b

Y = ab

Page 12

© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

SDCsSDCs

Notice
In the restructured network, f has different inputs, and so possibly now a
different “best” simplification

What about don’t cares?

a b X
0 0 0
0 1 1
1 0 1
1 1 1

a b Y
0 0 0
0 1 0
1 0 0
1 1 1

never see abX = 001, 010, 100 110 never see abY = 001, 011, 101 110

f =Xc+ Yd + acd
f

a
b
c
d

X = a+b

Y = ab

© R. Rutenbar 2001, CMU 18-760, Fall 2001 24

SDCsSDCs

These patterns are the satisfiability DCs
Easiest to think of them as a separate set of impossible patterns
“belonging to” each internal wire in a Boolean Logic Network

They are purely structural in origin: outputs can’t take values that are
not equal to (ie, don’t satisfy) what the attached vertex creates

Cannot have X != a+b Cannot have Y != a•b

X = a+b Y = a•b

a b X
0 0 0
0 1 1
1 0 1
1 1 1

a b Y
0 0 0
0 1 0
1 0 0
1 1 1

never see abX = 001, 010, 100 110 never see abY = 001, 011, 101 110

Page 13

© R. Rutenbar 2001, CMU 18-760, Fall 2001 25

Aside: How Will We Actually Represent DCs?Aside: How Will We Actually Represent DCs?

Some confusing notation and terminology
You’re probably used to seeing don’t cares just listed in the truth table

But, the way we will usually represent these is either:

As a set of patterns of 0s 1s on a node’s inputs that cannot happen

As a function of these inputs that makes a 1 just for those patterns
that cannot happen; DCG == 1 just for impossible patterns for G

p q r G

0 0 0 1
0 0 1 d
0 1 0 0
0 1 1 1
1 0 0 d
1 0 1 d
1 1 0 0
1 1 1 d

DC patterns
= {001, 100, 101, 111}

p q r DCG

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 26

Aside: Representing Don’t CaresAside: Representing Don’t Cares

Representation
Will even frequently see the DC function actually written in terms of an
SOP cover, a Boolean expression

a b c G

0 0 0 1
0 0 1 d
0 1 0 0
0 1 1 1
1 0 0 d
1 0 1 d
1 1 0 0
1 1 1 d

DC set = {001, 100, 101, 111}

a b c DCG

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

DCG = a’ b’ c + a b’ c’ + a b’ c + a b c

Page 14

© R. Rutenbar 2001, CMU 18-760, Fall 2001 27

Back to SDCsBack to SDCs

SDC “function” for wire is just a cover of illegal patterns

X = a+b Y= a•b

a b X
0 0 0
0 1 1
1 0 1
1 1 1

a b Y
0 0 0
0 1 0
1 0 0
1 1 1

a b X SDCX
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

SDCX = a’b’X + a’bX’ + ab’X’ + abX’ SDCY = a’b’Y + a’bY + ab’Y + abY’

a b Y SDCY
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

possible possible

impossible impossible

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

SDCs: How Do We Actually Use Them?SDCs: How Do We Actually Use Them?

What impact on simplification of f...?
Look at SDCs for each input wire x and y

Oops! Problem
SDCs in terms of a b X and a b Y

But, f is now only a function of a c d and X Y

How to resolve?

f = Xc + Yd + acd

=> but I want to know
impossible patterns
a c d X Y !

??

SDCX = a’b’X + a’bX’ + ab’X’ + abX’

=> impossible patterns of a b X

SDCY = a’b’Y + a’bY + ab’Y + abY’

=> impossible patterns of a b Y

Page 15

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

SDCsSDCs

Need to quantify out the “b” in SDCs, but how?

Just try each way and see what happens, for insight

Recall: given f(x,y,z,w)

(∃ x f)(y,z,w) = fx + fx’ (existential quantification)

(∀ x f)(y,z,w) = fx • fx’ (universal quantification)

In English

Existential quantification: removes var x, resulting function is true for
(y,z,w) whenever there is some pattern,
either (x=1,y,z,w) OR (x=0,y,z,w) that made original f == 1

Universal quantification: removes var x, resulting function is true for
(y,z,w) whenever both patterns
(x=1,y,z,w) AND (x=0,y,z,w) made original function f==1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 30

SDCsSDCs

Try quantifying wrt b, both ways...

X = a+b Y = a•b

SDCX = a’b’X + a’bX’ + ab’X’ + abX’

(SDCX)b =

(SDCX)b’ =

(∃ b SDCX)(a,X) = (SDCX)b + (SDCX)b’ =

(∀ b SDCX)(a,X) = (SDCX)b • (SDCX)b’ =

SDCY = a’b’Y + a’bY + ab’Y + abY’

(SDCY)b =

(SDCY)b’ =

(∃ b SDCY)(a,Y) = (SDCY)b + (SDCY)b’ =

(∀ b SDCY)(a,Y) = (SDCY)b • (SDCY)b’ =

X = a+b

Y = a•b
f = Xc + Yd + acd

a,c,d

a

b
a
b

Page 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 31

SDCsSDCs

Which is right?

X = a+b Y = a•b

(∃ b SDCX)(a,X) = X’ + a’

(∀ b SDCX)(a,X) = aX’

(∃ b SDCY)(a,Y) = Y + a

(∀ b SDCY)(a,Y) = a’Y

never see abX = 001, 010, 100 110 never see abY = 001, 011, 101 110

X = a+b

Y = a•b
f = Xc + Yd + acd

a,c,d

a

b
a
b

© R. Rutenbar 2001, CMU 18-760, Fall 2001 32

SDCsSDCs

Aside: why universal quantification does the trick
Because you want to know which patterns, independent of the value of
the var(s) you get rid of, are still impossible

The “independent of value of var” part is the key, it’s what universal
quantification does

x = a+b

(∃ b SDCX)(a,X) =X’ + a’ doesn’t work...

(∀ b SDCX)(a,X) =aX’ is right

a=0
x=0

b=0
x = a+b

a=0
x=0

b=1LEGAL IMPOSSIBLE

x = a+b
a=1

x=0
b=0

x = a+b
a=1

x=0
b=1IMPOSSIBLE IMPOSSIBLE

Page 17

© R. Rutenbar 2001, CMU 18-760, Fall 2001 33

SDCsSDCs

So, how do you actually compute SDCs?
Easy, do it for each output wire from each Boolean node

You want an expression that’s ==1 when X != (expression for X)

But this is just [X ⊕ (expression for X)]

Remember (expression for X) doesn’t have X in it!!

Try it on something simple to convince yourself

expression for X X

a
b

c X = ab + c

claim SDCX = X ⊕ (ab + c)

inputs
a
b
c

© R. Rutenbar 2001, CMU 18-760, Fall 2001 34

SDCsSDCs
Simplify... SDC = X ⊕ (ab + c) =

abcX SDC
0000 0
0001 1
0010 1
0011 0
0100 0
0101 1
0110 1
0111 0
1000 0
1001 1
1010 1
1011 0
1100 1
1101 0
1110 1
1111 0

a
b

c X

Page 18

© R. Rutenbar 2001, CMU 18-760, Fall 2001 35

SDCsSDCs

How to deal with SDCs on many wires into vertex?
In other words, how do I actually use SDCX SDCY to simplify f?

Answer: just OR the SDCs for each input wire to vertex,
then quantify away vars that are not inputs to f

SDC = (∀ vars not input to f)(Σ SDCi)
=patterns that cannot occur on f inputs

inputs i

vars are X, Y, a, c, d

f =Xc+ YD + acd
f

a
b
c
d

X = a+b

Y = ab

© R. Rutenbar 2001, CMU 18-760, Fall 2001 36

SDCsSDCs
Try it and see

Note we can ignore SDCs on a, c, d inputs to f since they are primary
inputs (ie, a ⊕ (expression for a) = a ⊕ a = 0, etc.

SDC = (∀ b)([X ⊕ (a+b)] + [Y ⊕ ab]) =

([X ⊕ (a+b)] + [Y ⊕ ab])b=1 • ([X ⊕ (a+b)] + [Y ⊕ ab]) b=0

f =Xc+ YD + acd
f

a
b
c
d

X = a+b

Y = ab

Page 19

© R. Rutenbar 2001, CMU 18-760, Fall 2001 37

SDCsSDCs

Twist: but what if there are actually DCs for network inputs,
impossible external patterns for abcd?

Example: suppose b=1 c=1 d=1 can never happen

How to handle for computing SDCs for f?

Answer: just OR in cover for these DCs in SDC expression

SDC = (∀ b)([X ⊕ (a+b)] + [Y ⊕ ab] + bcd) =

=[stuff we got before without these external DCs] + (a’cdx + acdx’)

b=1
c=1
d=1

DC

f =Xc+ Yd
f

a
b
c
d

X = a+b

Y = ab

© R. Rutenbar 2001, CMU 18-760, Fall 2001 38

SDCsSDCs

Notice this works...
Just look at the new terms we added to SDC: (a’cdX + acdX’ + cdY)

Pick a’cdX as example
==> a=0 c=1 d=1 X=1 is impossible

b=1
c=1
d=1

DC

X=1 a=0

c=1

d=1

Correct! This can only happen for input abcd = 0111 which is impossible

f =Xc+ YD + acd
f

a
b
c
d

X = a+b

Y = ab

Page 20

© R. Rutenbar 2001, CMU 18-760, Fall 2001 39

Controllability Don’t CaresControllability Don’t Cares

Defines those input patterns that cannot happen for specific
vertices, or for entire network

But, we’ve already seen these!

External global CDCs: come from outside for entire network,
like b=1 c=1 d=1 is impossible, in our example

Internal local CDCs: just patterns that cannot appear at any vertex

= (∀ vars not inputs)(Σ (local SDCs) + ext. global CDC)

SDCs versus CDCs ...?
SDCs: think of as belonging to each internal wire in network

CDCs: think of as belonging to each internal vertex in network

vertex
inputs

© R. Rutenbar 2001, CMU 18-760, Fall 2001 40

ODCs belong to each output of a vertex in network
Patterns that will make this output not observable at network output

“Not observable” means a change 0<->1 on this vertex output doesn’t
not change ANY network output, for this pattern

New example

Look at ODCT for output wire of vertex T

Observability Don’t CaresObservability Don’t Cares

T = xy’ + x’y

F = xy +Tz’ + T’y’

x

y

z

T

F

Note--new example now...

Patterns that
make F insensitive to T....

Page 21

© R. Rutenbar 2001, CMU 18-760, Fall 2001 41

ODCsODCs

In English...
ODC for T are patterns of inputs to the vertex for T (patterns of x,y)
such that we can compute F without caring about what T is

Since F= xy + Tz’ + T’y’, observe

If x=1 y=1 then F = 1 + Tz’ + T’y’ =1 = independent of T

Note there are patterns of other vars that do this too:

If z=1 y=1 then F = xy +T•0 + T’•0 = xy = independent of T

If z=0 y=0 then F = xy + T•1 + T’•1 = xy + T + T’ = 1 = indep. of T

So, our guess is that ODCT = xy

This is the only pattern that depends just on vars input to T

For this pattern, network output insensitive to changes in T

How to compute, mechanically?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 42

When is network output F insensitive to internal var X?

Be precise
Insensitive means X changes => but F never changes

More precisely: if we specify F as function of X, then FX = FX’
So, what patterns of the other inputs to F cause F(... X=0)=F(...X=1 ...)?

When these patterns are applied, changing X does not ever matter to
output at F

But we’ve already seen something close to this...

ODCsODCs

F depends on X

X = stuff
network
output F

X

Page 22

© R. Rutenbar 2001, CMU 18-760, Fall 2001 43

ODCsODCs

Boolean difference, ∂F/ ∂ X
Defined as ∂ F/ ∂ X = FX ⊕ FX’
Recall we observed that patterns that make ∂ F/ ∂ X = 1 correspond to
patterns where a change in X causes some change in F

Stated differently

Boolean difference • ∂F/• ∂X is a function that is 1 for those patterns
that make X observable

F depends on X

X = stuff
network
output F

X

x
y

f
x
y

f

∂ F/ ∂ x = y ∂ F/ ∂ x = y’

© R. Rutenbar 2001, CMU 18-760, Fall 2001 44

ODCsODCs

But we want patterns that make vertex output X unobservable,
since we want don’t care patterns

So, if ∂ F/ ∂ X is patterns that make X observable

...then (∂ F/ ∂ X) is patterns that make X unobservable

Back to our example: want to look at (∂ F/ ∂ T) here

∂ F / ∂ T = FT ⊕ FT’ =

F = xy +Tz’ + T’y’

x

y

z

T

F

Page 23

© R. Rutenbar 2001, CMU 18-760, Fall 2001 45

ODCsODCs

So ODCT = xy + xz’ + y’z’ + x’yz
But, same problem: can’t use this to simplify vertex for T since T is only
a function of x and y

What to do?

Same as before: universal quantification over vars not input to T

In this case, want (∀ z)(xy + xz’ + y’z’ +x’yz) = xy which is correct

ODCT = xy => x=1 y=1 is don’t care since it
makes T unobservable at network
output F

T = xy’ + x’y

F = xy +Tz’ + T’y’

x

y

z

T

F

© R. Rutenbar 2001, CMU 18-760, Fall 2001 46

ODCsODCs

More general: what if many network outputs?
Only patterns that are unobservable at ALL outputs can be ODCs

X

F1 F1

F2

F3

F2

F3

ODC = (∀ vars not input to X)[Π ∂ Fi / ∂ X]
= patterns that make x unobservable at ALL f outputs

outputs
Fi

AND all derivatives
together, for each output

Page 24

© R. Rutenbar 2001, CMU 18-760, Fall 2001 47

Don’t Cares, In GeneralDon’t Cares, In General

Why is getting these things so very hard?

Because real networks are big, and the vertex X you want to simplify
may be very far from the primary inputs, and primary outputs

Inputs to your vertex are function of a lot of stuff

Network outputs are functions of your vertex and lots of other stuff

Representing all this stuff can be explosively large, even with BDDs

X

© R. Rutenbar 2001, CMU 18-760, Fall 2001 48

Getting Network DCsGetting Network DCs

How do people do it
In general, they don’t

Usually suffice with getting the local SDCs, which just requires
looking at outputs of antecedent vertices and computing the SDC
patterns, which is easy (no big search)

There are also incremental, vertex-by-vertex algorithms that walk
the network to compute full CDC set for X, and full ODC set for X,
but these can be very expensive in space

Also, some tricks called FILTERS

You want to find patterns you can use as don’t cares to simplify
vertex X

Instead of finding all such DC patterns, can restrict search to avoid
patterns that cannot possibly be useful to simplify X

Such algorithms called “filters” -- they get rid of DCs you don’t need

See De Michelli for details about all this stuff

For us, knowing the straightforward brute force formula is OK

Page 25

© R. Rutenbar 2001, CMU 18-760, Fall 2001 49

Now know enough to do this
Simplify node X inside this network

Assume pattern a=0 d=0 never occurs at network input

How?
Compute SDC for X, including external global DC=a’d’

Compute ODC for X by doing (∂ Q/ ∂ X)’

You get to use anyplace SDCX +ODCX ==1 as a don’t care for X

ExampleExample

X = Yd + Z

Y = b+c Q = aX

Z = b•c

Q

a

b
c

d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 50

SummarySummary

New kinds of don’t cares in multi-level networks
Byproducts of the network model

It’s not all one big function, it’s a bunch of little functions (vertices)
connected by wires

Satisfiability DCs: structural in origin, can’t have output of a vertex not
equal to the expression for that vertex

Output DCs: some patterns make vertex output unobservable at
network outputs

SDC + ODC: for any given vertex, can use this expression as places for
don’t cares to simplify the vertex function

In practice
Very hard to get these, esp ODCs (see the book)

Usually just use the local SDC from antecedent vertices

Also, there are algorithms (filters) that can just go find useful don’t
cares for simplification

