
Page 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 1

(Lec 7) Multi-Level Minimize I: Models & Methods(Lec 7) Multi-Level Minimize I: Models & Methods
What you’ve seen so far...

2-level minimization a la ESPRESSO
Manipulates (reshapes) SOP covers of functions
Heuristic: REDUCE - EXPAND - IRREDUNDANT

What’s left?
Multi-level minimization, where final form of logic network is not
just 2-level SOP AND-OR form

What do we need?
New, more general model of logic networks
New operators: forms of division for Boolean functions
New heuristic minimization strategies to use this model + operators

© R. Rutenbar 2001, CMU 18-760, Fall 2001 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar, 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001, CMU 18-760, Fall 2001 3

Where Are We?Where Are We?
Moving on to real logic synthesis--for multi-level stuff

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 4

ReadingsReadings
DeMicheli has a lot of relevant stuff

Again, he worked on some of this at Berkeley and at IBM

Read this in Chapter 8
8.1 Intro: take a look.
8.2 Models and Transforms--this is about the “Boolean network model”
8.3 The Algebraic Model -- how people do factoring for complex
Boolean logic networks

Page 3

© R. Rutenbar 2001, CMU 18-760, Fall 2001 5

Why Multi-Level FormsWhy Multi-Level Forms
2-level too restrictive: specific area vs delay tradeoff

Area = gates + literals (wires), ie, things that take space on a chip
Delay = max levels of logic gates required to compute function
2-level is minimum gate delay possible, but usually worst on area

area

delay

typical 2-level design =
many gates, but only 2 levels
of logic, so fastest possible

multi-level designs =
fewer gates, but > 2 levels

small,
few gates+lits

big,
many gates+lits

fastest, 2 levels

slower, >2 levels

© R. Rutenbar 2001, CMU 18-760, Fall 2001 6

Why Multi-Level?Why Multi-Level?
Rarely see 2-level designs for really big things, mostly for
pieces of bigger things

Even smallish things routinely done as multi-level

~1000 gate
“block” of logic

1 2 3 4 999

1000

?

This is usually NOT going to be the
preferred logic network structure...

Page 4

© R. Rutenbar 2001, CMU 18-760, Fall 2001 7

Real MultiLevel ExampleReal MultiLevel Example
…and this is a pretty small design, done by Synopsys DesignCompiler

Levels of
logic in
network

1 2 3 4 5 6 7 8 9 10 11

© R. Rutenbar 2001, CMU 18-760, Fall 2001 8

Boolean Logic Network ModelBoolean Logic Network Model
Need more sophisticated model of these networks

New model: Boolean Logic Network
Idea: it’s a netlist of connected components, like a logic diagram, but
now individual components can be arbitrary Boolean func’s

a
b

c

x

y

Ordinary gate netlist Same circuit as a
Boolean logic network,

x, y are now Boolean functions

primary
inputs

primary
outputs

internal
vertices

Page 5

© R. Rutenbar 2001, CMU 18-760, Fall 2001 9

Boolean Logic NetworksBoolean Logic Networks
It’s just a graph, with:

Primary inputs (usually vars)
Primary outputs (stuff network creates for other logic to consume)
Intermediate nodes that are themselves represented as Boolean
functions...all in SOP form

Now what?
Look at some operators that one can use to manipulate these networks
Some are fairly simple structural operations on graphs
Some will require entirely new operators (like division)
Our derivation follows DeMicheli closely, sections 8.1 and 8.2

© R. Rutenbar 2001, CMU 18-760, Fall 2001 10

Boolean Logic NetworksBoolean Logic Networks
Consider example from De Micheli

Let’s look at some operations on this network…

p = ce + de
q = a + b
r = p + a’
s = r + b’
t = ac + ad + bc + bd + e
u = q’c + qc’ + qc
v = a’d + bd + c’d + ae’
w = v
x = s
y = t
z = u

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z

Network Quality measure = ∑nodes (literals) =

Page 6

© R. Rutenbar 2001, CMU 18-760, Fall 2001 11

Reminder: Boolean Network ModelReminder: Boolean Network Model
Remember what this picture means

It’s a graph
Has primary inputs and outputs
Internal nodes mean “here is an SOP-form Boolean function”
Edges means “here are signals going into/out of these functions”
#literals = count up all lits in every SOP equation in every Boolean node

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z

As gates it looks like this...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 12

Operations on Boolean NetworkOperations on Boolean Network
What’s the overall goal here?

Simplify the network – reduce total number of literals
Optimize timing – reduce delay from input to output thru gates, wires

3 basic types of operations
Add new network nodes: this is related to factoring—take “big” nodes
and factor them into more, better, smaller nodes
Remove network nodes: take nodes that are “too small” and substitute
them back into the fanout nodes that they feed
Simplify network nodes: no change in # of nodes, just simplify insides

A big set of possible operators in real implementations
Look at just a couple of examples…

Page 7

© R. Rutenbar 2001, CMU 18-760, Fall 2001 13

Network Ops: EliminationNetwork Ops: Elimination
Reducing #nodes: Elimination

Removes an internal vertex by replacing it (adding its SOP expression)
into all the other vertices it feeds
Note: eliminate vertex for r requires substituting (p+a’) in s node

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

w

x

y

z

Σlits =

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z
s=p+a’+b’

© R. Rutenbar 2001, CMU 18-760, Fall 2001 14

Network Ops: ExtractionNetwork Ops: Extraction
Adding nodes: Extraction

Create a new vertex that represents a common subexpression for
>= 2 vertices, and add it to network
Substitute the output of the new vertex for common parts elsewhere
Note that: p = (c+d) e and t=(c+d)(a+b) + e, so extract c+d

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ke

t=ka+kb+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z

k=c+d

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z

Σlits =

Page 8

© R. Rutenbar 2001, CMU 18-760, Fall 2001 15

Network Ops: SimplificationNetwork Ops: Simplification
Simplifying a node: 2-Level Simplification

Run a 2-level minimizer (ESPRESSO!) at a vertex -- see if the SOP cover
of the vertex gets simpler

Note -- if you don’t eliminate any vars, it’s a local transformation
If you actually eliminate a var, it’s global -- changes the network
Note: note u = q’c+qc’+qc = q+c

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q+c

r=p+a’ s=r+b’

w

x

y

z

local change,
inside vertex only

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z

Σlits =

© R. Rutenbar 2001, CMU 18-760, Fall 2001 16

Network Ops: Iterative ImprovementNetwork Ops: Iterative Improvement
Sort of like ESPRESSO loop

Iteratively apply these (and other) ops to network to try to improve it
Usually count literals (all wires into each node of the network)
or count (gates + literals)
Our example can simplify to this by applying these (and other) ops:

a

b

c

d

e

j=a’+b+c’

t=kq+e

q=a+b u = q+c

s=ke+a’+b’

w

x

y

z

k=c+d

v=jd+ae’Literals

Before:

After:

Page 9

© R. Rutenbar 2001, CMU 18-760, Fall 2001 17

Network Ops: ScriptsNetwork Ops: Scripts
What do people really use to do multi-level optimization?

Programs like MIS II, SIS, HSIS, VIS (from Berkeley)
Commercial tools from Synopsys, Synplify, Cadence, Avanti

What do multilevel synthesis tools look like?
Use Boolean network model
Provide collections of network operators
Users invoke scripts that run a sequence of these ops on their design

What’s a script look like...?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 18

ScriptsScripts
Here is a “famous” script originally from MIS II tool

The so-called “rugged” script
A sequence of network ops...

sweep; eliminate -1
simplify -m nocomp
eliminate - 1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

Page 10

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

Running Real Logic Synthesis: SISRunning Real Logic Synthesis: SIS
SIS is a Berkeley multi-level synthesis tool

/afs/ece/class/ee760/sis is the binary for IBM and SUN

UC Berkeley, SIS Development Version (compiled 2-Nov-95 at 6:54 PM)
sis>

Command prompt
Type “help” to get a list of all commands

© R. Rutenbar 2001, CMU 18-760, Fall 2001 20

Rugged Ops: SweepRugged Ops: Sweep
Sweep ...

Eliminates all single-input
vertices
Eliminates vertices with a
constant function (ie, ==0, ==1
always)
Sort of a basic “clean up” op

sweep; eliminate -1
simplify -m nocomp
eliminate - 1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

Page 11

© R. Rutenbar 2001, CMU 18-760, Fall 2001 21

Sweep ExamplesSweep Examples

Sweep examples

a

G

H

Q

F = a

G = F

H = F

Q = a + a’

a

G

H

Q

sweep

© R. Rutenbar 2001, CMU 18-760, Fall 2001 22

Running sweep in SISRunning sweep in SIS
SIS session

sis> read_eqn sweep.eqn
sis> print

F = a
{G} = F
{H} = F
{Q} = a + a'

sis> sweep
sis> print

{Q} = a + a'
{G} = a
{H} = a

F = a ;
G = F ;
H = F ;
Q = a + a' ;

Change in total literal count:

UNIX file: sweep.eqn

a

G

H

Q

F = a

G = F

H = F

Q = a + a’

Page 12

© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

Aside: SIS SyntaxAside: SIS Syntax
For a typical eqn format input file

+ means OR
* means AND
“ “ (a space) also means AND
‘ (one apostrophe) means NOT (on a literal)
() used for grouping
!= means EXOR
== means EXNOR
!() means NEGATE the contents of the parens
F (a capital letter) usually means a function, output of a network node
x (a small letter) usually means a primary input to the overall network

SIS “print” output
{G} means G is a primary output of the network (nobody else eats it)
[31] means SIS creates a new Boolean network node during
simplification, and it gives you a number in brackets as an ID.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 24

Network Ops: EliminateNetwork Ops: Eliminate
Eliminate <threshold>...

Eliminates all nodes in the network
whose “value” is less than or equal
to threshold.
Value of node

=Number of times the node is
used in the factored form for
each of its fanout nodes
=Number of lits saved by NOT
eliminating the node

Eliminates node by collapsing it
into its fanout nodes
“-1” means eliminate nodes only
used once elsewhere in network

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

Page 13

© R. Rutenbar 2001, CMU 18-760, Fall 2001 25

“Value” of Elimination“Value” of Elimination
Scenario

We have a vertex that has L literals in it; It feeds N other vertices
What happens if we eliminate it? What is “value” of this?
Answer is: change in total number of literals in design

F = L literals

G1 = F + ...

G2 = F + ...

GN = F + ...

•
•
•

Total literals before =

We eliminate vertex F

Total literals after =
Change = value =

G1 = (L literals) + stuff…
eliminate

G2 = (L literals) + stuff…

G2 = (L literals) + stuff…

•
•
•

© R. Rutenbar 2001, CMU 18-760, Fall 2001 26

Eliminate ExamplesEliminate Examples

Eliminate -1

Eliminate 5

F = abc

G1 = F+d

F = ab G = F+x eliminate G = ab+x

G2 = F+ef

G3 = F+gh

G4 = F+de Σlits =

eliminate

G1 = abc +d

G2 = abc +ef

G3 = abc +gh

G4 = abc +de
Σlits =

Page 14

© R. Rutenbar 2001, CMU 18-760, Fall 2001 27

Running eliminate in SISRunning eliminate in SIS
SIS session

sis> read_eqn elim.eqn
sis> print

F = a b c
{G1} = F + d
{G2} = F + e f
{G3} = F + g h
{G4} = F + de

sis> eliminate 1
sis> print

F = a b c
{G1} = F + d
{G2} = F + e f
{G3} = F + g h
{G4} = F + de

F = a b c ;
G1 = F + d ;
G2 = F + e f ;
G3 = F + g h ;
G4 = F + de ;

UNIX file: elim.eqn

No change. Why?
Cost to eliminate F node is +5 literals.
But, we set threshold to +1 literal, so—eliminate
won’t do anything here. Cost is too high.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

Running eliminate in SISRunning eliminate in SIS
SIS session continued

sis> eliminate 3
sis> print

F = a b c
{G1} = F + d
{G2} = F + e f
{G3} = F + g h
{G4} = F + de

sis> eliminate 5
sis> print

{G1} = a b c + d
{G2} = a b c + e f
{G3} = a b c + g h
{G4} = a b c + de

sis>

No change. Why? Same reason.
Cost to eliminate F node is +5 literals.
But, we set threshold to +3 literals, so—eliminate
won’t do anything here. Cost is too high.

Now it does it.

G1 = abc +d

G2 = abc +ef

G3 = abc +gh

G4 = abc +de

Page 15

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

Network Ops: SimplifyNetwork Ops: Simplify
simplify

Run ESPRESSO on each node
Minimize SOP 2-level form of each
“-m nocomp” says don’t try to
compute the full offset for each
node-- makes it run faster

full_simplify
Same as simplify, but uses a larger
set of don’t cares...
...works harder to try to get a
better (smaller SOP) answer

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

© R. Rutenbar 2001, CMU 18-760, Fall 2001 30

Simplify ExamplesSimplify Examples

Simplify

G1 = a + b + c

G = a + a’

F = a + a’b + c

1

simplify

simplify

Goal is just to “clean up” insides of each
node in the Boolean network

Page 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 31

Network Ops: ResubNetwork Ops: Resub
Resub -a

Substitute each node in the
network into each other node in
the network
In other words, for each pair of
nodes S, T, checks if S is a factor of
T, or if T is a factor of S
Tries to use both the true and
complemented form of the output
of each node it tries to substitute
Loops until network stops getting
“better”, ie, literal count stops
decreasing
“-a” means that algebraic division
is how it checks to see if one node
can substitute (divide) into another
(We talk about algebraic division
next -- don’t worry...)

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

© R. Rutenbar 2001, CMU 18-760, Fall 2001 32

Resub ExampleResub Example

Resub example 1

Resub example 2

resub

F = ab

G = ab+c

H = ab+e

F = ab
G = F +c

H = F+e

resub

F = ab

G = ab+c

H = a’ + b’ + cd

F = ab
G = F +c

H = F’ +cd

Note: F was
complemented

Page 17

© R. Rutenbar 2001, CMU 18-760, Fall 2001 33

Running resub in SISRunning resub in SIS
SIS session

sis> read_eqn resub.eqn
sis> print

{F} = a b
{G} = a b + c
{H} = a b + e

sis> resub -a
sis> print

{F} = a b
{G} = {F} + c
{H} = {F} + e

F = a b ;
G = a b + c ;
H = a b + e ;

UNIX file: resub.eqn

F = ab
G = F +c

H = F+e

© R. Rutenbar 2001, CMU 18-760, Fall 2001 34

Network Ops: FxNetwork Ops: Fx
Fx

Extracts common subexpressions
that are either

A single cube (eg, b’cd)
A double cube (eg, ab + b’cd)

Result is a new nodes in the
network that represent these
common “factors” removed
Note that after you get these
factors, you run “resub” to see
which ones are worth keeping

…ie, if it made the network
worse to factor them out,
resub will put the factors back
into the fanout nodes

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

Page 18

© R. Rutenbar 2001, CMU 18-760, Fall 2001 35

fx Examplefx Example

fx example

fx N = ab+c
F = N + x

G = Nx+d

H = ab+d

F = ab + c + x

G = abx + cx + d

H = ab + d
Fx will conside several

potential factors:
ab, ab+c,

then decide which
ones are worth extracting

© R. Rutenbar 2001, CMU 18-760, Fall 2001 36

Running fx in SISRunning fx in SIS
SIS session

sis> read_eqn fx.eqn
sis> print

{F} = a b + c + x
{G} = a b x + c x + d
{H} = a b + d

sis> fx
sis> print

{F} = [31] + x
{G} = [31] x + d
{H} = a b + d
[31] = a b + c

F = a b + c + x;
G = a b x + c x + d ;
H = a b + d ;

UNIX file: fx.eqn

[31] = ab+c
F = [31] + x

G = [31]x+d

H = ab+d

Page 19

© R. Rutenbar 2001, CMU 18-760, Fall 2001 37

resub != fxresub != fx
fx tries to find NEW common factors

It adds nodes to the network to do this
Tries to find good (usable) common subexpressions

resub uses what is already in network
It CANNOT go find or “extract” new factors
It just looks at what nodes are already around in network
It tries to use these to substitute one node into another to save literals

So….
Do fx first: create a bunch of good-looking common factors
Do resub next: try to use these factors to improve network

© R. Rutenbar 2001, CMU 18-760, Fall 2001 38

Rugged ScriptRugged Script
Now it’s possible to go back
and really read the script

It should make sense...
4 major phases of simplification
Goes from easy optimizations to
harder, more expensive ones
Uses ESPRESSO to do each
individual node
Uses algebraic division to find
good common subexpressions
Tracks literal count to judge
quality of network

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

Housekeeping

First round of
“easy” factoring

Second round of
“aggressive” factoring

Optimize
each node
aggressively

Page 20

© R. Rutenbar 2001, CMU 18-760, Fall 2001 39

Multilevel Synthesis: What’s Left?Multilevel Synthesis: What’s Left?
Factoring: how do we really do it?

Operators we don’t have are those related to factoring out (extracting)
common subexpressions from multiple vertices

Allow us to do the substitution, decomposition, extraction ops
(Simplification op is just ESPRESSO on 1 vertex)
We need this to be able to do the “fx” factoring

New model of Boolean functions: Algebraic model
Yet another way of thinking about Boolean functions that allows us easily
to do several division-like operations
Term “algebraic” comes from pretending that Boolean expressions
behave like polynomials of real numbers, not like Boolean algebra
Big new Boolean operator: algebraic division

© R. Rutenbar 2001, CMU 18-760, Fall 2001 40

Algebraic ModelAlgebraic Model
Idea: keep just those rules (axioms) that work for polynomials
of reals AND Boolean algebra, dump rest

Real numbers

a•b = b•a
a+b = b+a
a•(b•c) = (a•b)•c
a+(b+c) = (a+b)+c
a•(b+c) = a•b + a•c
a•1 = a a•0 = 0
a+0 = a

Boolean algebra

a•b = b•a
a+b = b+a
a•(b•c) = (a•b)•c
a+(b+c) = (a+b)+c
a•(b+c) = a•b+a•c
a•1 = a a•0 = 0
a+0 = a

a+a’ = 1 a•a’ = 0
a•a = a a+a = a
a+1 = 1
a+(b•c) = (a+b)•(a+c)

SAME

NOT
ALLOWEDx

Page 21

© R. Rutenbar 2001, CMU 18-760, Fall 2001 41

Algebraic ModelAlgebraic Model
In English

Only get to use algebra rules from real numbers
A variable and its complement are treated as totally unrelated

Idea
Boolean functions represented / manipulated as SOP expressions
Each product term in such an expression is just a set of variables
The expression itself is just a set of these products (cubes)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 42

Algebraic DivisionAlgebraic Division
Model for factoring

Given function f we want to factor like this:

(just like regular numbers, eg, 15 = 7 • 2 + 1)
Boolean example

divisor quotient remainder (if =0, then we say the
say quotient is a factor)

f = d•q + r

Page 22

© R. Rutenbar 2001, CMU 18-760, Fall 2001 43

Algebraic DivisionAlgebraic Division
Example

f = ac + ad + bc + bd + e want f = d • q + r

Divisors (d) Quotient (q) Remainder (r) Factor?
ac+ad+bc+bd+e
a+b
c+d
a
b
c
d
e

© R. Rutenbar 2001, CMU 18-760, Fall 2001 44

Algebraic DivisionAlgebraic Division
Turns out there is a very nice algorithm for this

Inputs
A Boolean expression A and a divisor (to divide by) D, represented as
sets of cubes (and each cube a set of literals)

Output
Quotient q = A/D = cubes in quotient, or 0 if none
Remainder r = cubes in remainder, or 0 if D was a factor
ie, figures out q, r so that A = D•q+ r = D•(A/D) + r

Strategy
Cubewise walk thru cubes in divisor D, trying to divide them into A
...being careful to track which cubes do divide into A

Page 23

© R. Rutenbar 2001, CMU 18-760, Fall 2001 45

Algebraic Division AlgorithmAlgebraic Division Algorithm
Algorithm

AlgebraicDivision(A, D) { /* divide D into A */

for (each cube d in divisor D) {
let C = { cubes in A that contain this product term “d” };
if (C is empty) {

return (quotient = 0, remainder = A);
}
let C = cross out literals of cube “d” in each cube of C;
if (d is the first cube we have looked at in divisor D)

let Q = C;
else Q = Q ∩ C;

}
R = A - (Q * B);
return (quotient = Q, remainder = R)

}

Example:
Cube xyzw contains
product term “yz”

Example:
Suppose C = xyz + yzw +pqyz
and d = “xy”. Then crossing
out all the “xy” parts yields
z + y + pq

bugfix

bugfix

© R. Rutenbar 2001, CMU 18-760, Fall 2001 46

Algebraic Division: ExampleAlgebraic Division: Example
A/D: A = axc + axd + axe + bc + bd + e D = ax + b

axeaxe

Q =

D cube: b
C = …

Q =
e

bd
bc

axdaxd
axcaxc

D cube: ax
C = …A cube

R = (axc + axd + axe + bc + bd + e) – [(ax+b)*()]

Easiest way manually is to make this
table:

one row per cube in A,
one column per cube in D,
bottom row to evolve Quotient Q

and, when done, remember to get remainder

Remainder R = A – Q*D

Page 24

© R. Rutenbar 2001, CMU 18-760, Fall 2001 47

Algebraic Division: WarningAlgebraic Division: Warning
Remember the basic model assumptions

Cannot do any “boolean” simplification, only “algebraic”

So what?
OK, suppose you have this

You must transform it to something like this...

Because you MUST treat the true and compl forms of var as different

A = ab’c’ + ab + ac + bc B = ab + c’ want A / B

© R. Rutenbar 2001, CMU 18-760, Fall 2001 48

One More Constraint: Redundant CubesOne More Constraint: Redundant Cubes
To do A/D, we need function A not to have redundant cubes

Redundant meaning formally minimal with respect to single-cube
containment, ie, “completely covered by other cubes in SOP cover”

F = a + ab + bc is redundant
D = a is the divisor; we want to do F/D

ab
c

now: compute F / D, ie, F / a
use our algebraic division algorithm...

00 01 11 10
0

1

Page 25

© R. Rutenbar 2001, CMU 18-760, Fall 2001 49

Multilevel Synthesis Models: Where are We?Multilevel Synthesis Models: Where are We?
Given Boolean A, D, you can compute A = Q*D + R easily

This is great—but its still not enough
Real problem: I give you n functions F1, F2, … Fn, and want to find a
set of good common divisors di

How to find?
Case 1: divisors d that are just 1 cube (1 product term), eg, d = ab
Case 2: “bigger” multiple-cube divisors, eg d = ab + c’d + e

factor d1 = ab+c
F1 = d1 + x

F2 = (d1)x+q

F3 = ab+q

F1 = ab + c + x

F2 = abx + cx + q

F3 = ab + q

© R. Rutenbar 2001, CMU 18-760, Fall 2001 50

New Idea: KernelsNew Idea: Kernels
Where to look for multiple cube divisors? Kernels

Kernel of a Boolean expression f is:

A cube-free quotient of the expression f that results when you
divide f by a divisor that is itself a single cube (ie, 1 product term)
Co-kernel of f is:

divisor d

quotient q

expression f

remainder r

f = d•q + r

d = 1 cube

kernel if cube-free

expression f

remainder r

f = d•q + r

Page 26

© R. Rutenbar 2001, CMU 18-760, Fall 2001 51

KernelsKernels
Cube-free means...?

Means you cannot factor out a single cube (product term) divisor that
leaves no remainder
Technically -- has no one cube that is a factor of expression
So, you divide expression f by a cube, look at result, if you can pull out a
cube -- any cube -- with 0 remainder, it’s not a kernel

Expression f f=d*q+r Cube-free?
a

a+b

ab + ac

abc + abd

ab + acd + bd

© R. Rutenbar 2001, CMU 18-760, Fall 2001 52

KernelsKernels
Kernels of expression f denoted K(f)

Look at example

Divisor cube d f= d • q + r Is it a Kernel of f?
1 (1)(abc+abd+bcd)+0 No, has cube = b as factor
a
b
c
d
ab
ac
ad
bc
bd
cd
abc
...

f = abc + abd + bcd

Page 27

© R. Rutenbar 2001, CMU 18-760, Fall 2001 53

KernelsKernels
What don’t we know yet?

Why we should care about kernels
If we should care, how to find them

Why you should care:
Theorem: Brayton & McMullen

Expressions f, g have a common multiple-cube divisor d

if and only if

there are kernels k1 ε K(f), k2 ε K(g)
such that d ε κ1 ∩ κ2

and | k1 ∩ κ2 | ≥ 2

© R. Rutenbar 2001, CMU 18-760, Fall 2001 54

Kernel TheoremKernel Theorem
OK, let’s try that in English...

Start with expressions f and g
Look at sets of kernels of each K(f), K(g)
Since k1 is a kernel of f, k2 is a kernel of g, we know that

Remember: k1, k2 are cube-free, they have to be multi-term SOP
expressions lacking a common factorable cube

f = cube1 • k1 + remainder1
g = cube2 • k2 + remainder2

suppose k1 = (stuff1 + Xcube + Ycube + Zcube)
suppose k2 = (stuff2 + Xcube + Ycube + Zcube)

then k1 ∩ k2 = terms in both = (Xcube + Ycube + Zcube)

Page 28

© R. Rutenbar 2001, CMU 18-760, Fall 2001 55

KernelsKernels
So if we substitute back into f, g

...but we can rewrite this, pulling out k1 ∩ k2 = (X + Y + ...)

...but now it’s clear that k1 ∩ k2 = (X + Y + ...)
is a common, multiple-cube divisor! It’s a nice, big common factor!

f = cube1 • (stuff1 + Xcube + Ycube + Zcube) + remainder1
g = cube2 • (stuff2 + Xcube + Ycube + Zcube) + remainder2

f = (Xcube + Ycube + Zcube)•cube1 + [cube1•stuff1 + remainder1]
g =(Xcube + Ycube + Zcube)•cube2 + [cube1•stuff2 + remainder2]

© R. Rutenbar 2001, CMU 18-760, Fall 2001 56

KernelsKernels
That was NOT a Proof!!

...it was just an example, but it illustrates what’s going on

Why is Brayton/McMullen so important?
It’s a necessary and sufficient condition

It’s hugely practical: the only place to look for multiple-cube factors is
in intersections of the kernels of your functions. There’s no place else.

There is a common
multiple-cube divisor
for your functions f, g

You can find kernels in f, and in g
such that intersection of kernels
gives expression with >=2 cubes;

...that intersection is your divisor

IFF

Page 29

© R. Rutenbar 2001, CMU 18-760, Fall 2001 57

Kernels: ExampleKernels: Example
Consider this f, g

f = ae + be + cde + ab g = ad + ae + bd + be + bc

K(f) Kernel Co-kernel
a+b+cd e
b+e a
a+e b
ae+be+cde+ab 1

K(g) Kernel Co-kernel
a+b d or e
d+e a or b
d+e+c b
ad+ae+bd+be+bc 1

Intersecting these 2 kernels: (a+b+cd) * (a+b) = (a+b)

(a+b) is a divisor we can consider for both f, g

© R. Rutenbar 2001, CMU 18-760, Fall 2001 58

KernelsKernels
So, they are quite useful, but how to get them?

Another recursive algorithm (are we surprised...?)
There are 2 more useful properties of kernels we need to see first…

Start with a function f and a kernel k1 in K(f)

First: a new, interesting question: what about K(k1) ??
k1 is a perfectly nice Boolean expression, so its got its own kernels
Do these kernels have anything interesting to say about K(f)...?

f = cube1 • k1 + remainder1

Page 30

© R. Rutenbar 2001, CMU 18-760, Fall 2001 59

KernelsKernels
Look at K(k1)

Suppose k2 is a kernel in K(k1), then we know

Substitute this in for k1 in original expression for f

Neat trick: cube1•cube2 is itself just another single cube, so rewrite to
emphasize this fact:

f = cube1 • k1 + remainder1
=

k1 = cube2 • k2 + remainder2

© R. Rutenbar 2001, CMU 18-760, Fall 2001 60

Kernel HierarchyKernel Hierarchy
So , what does this say?

k2 is itself a kernel of function f !
There is a hierarchy of kernels, each inside the next, up the hierarchy

Terminology
A kernel k in K(f) is a level 0 kernel if it has no kernels inside it except
itself

In English: only cube you can pull out is ‘1’ and get a cube-free
quotient as the result

A kernel k in K(f) is a level i kernel if it contains only kernels
of level < i, and just one kernel at level i which is itself

In English: a level-1 kernel only has level-0 kernels inside it.
A level-2 kernel only has level-1 kernels in it, etc…

Page 31

© R. Rutenbar 2001, CMU 18-760, Fall 2001 61

Kernel HierarchyKernel Hierarchy
2nd useful result [Brayton et al]

Co-kernels of a Boolean expression in SOP form correspond to intersections
of 2 or more of its cubes in this SOP form

NOTE: Intersections here means specifically that we regard a cube as a
set of literals, and look at common subsets of literals

Note: this is not like “AND” for products.

Example

ace + bce + de + g

ace ∩ bce = ce => ce is a potential co-kernel

ace ∩ bce ∩ de = e => e is a potential co-kernel

© R. Rutenbar 2001, CMU 18-760, Fall 2001 62

Kernel HierarchyKernel Hierarchy
How do we use these 2 results?

Find the kernels recursively –
Whenever we find one, call kernel() routine on it, so find (if any)
lower level kernels inside

Use algebraic division to divide function by potential co-kernels, to
generate recursive calls…

…but be smart: co-kernels are intersections of the cubes
...if there’s at least 2 cubes, then look at the intersection C of the
literals in those cubes and use the result as our co-kernel cube

Page 32

© R. Rutenbar 2001, CMU 18-760, Fall 2001 63

Kernel AlgorithmKernel Algorithm
Algorithm is then...

FindKernels(expression F) {
K = null;
for (each variable x in F) {

if (there are at least 2 cubes in F that have variable x) {
let S = { cubes in F that have variable x in them };
let c = cube that results from intersection of all cubes in S,

this will be the product of just those literals
that appear in each of these cubes in S;

K = K ∪ FindKernels(F / c) ;
}

}
K = K ∪ F ;
return(K)

}

algebraic division, but
simpler since it always
just divides by exactly
1 cube, a simple product term

Function F is always its
own kernel, with
trivial cokernel = 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 64

Kerneling ExampleKerneling Example
To start, divide f by each of the variables, and use to recurse

We’re looking for co-kernels with ONE variable in them
But—be smart, it cannot be a cokernel unless its in at least 2 cubes

f = ace + bce + de + g
a

b c d e g
cubes wi c=

C =∩=

f/C =

recurse on:

cubes wi e=

C = ∩=

f/C =

recurse on:

no recurs
only 1
cube wi a

no recurs
only 1
cube wi b

no recurs
only 1
cube wi d

no recurs
only 1
cube wi e

Page 33

© R. Rutenbar 2001, CMU 18-760, Fall 2001 65

Kernel Hierarchy, Example RevisitedKernel Hierarchy, Example Revisited
With this algorithm, overall recursion tree looks like this

f = ace + bce + de + g
a

b c d e g
cubes=
C =
f/C =

cubes=
C =
f/C =

cubes=
C =
f/C =

a b c d e g

© R. Rutenbar 2001, CMU 18-760, Fall 2001 66

Kernel HierarchyKernel Hierarchy

With this algorithm...
Can find all the kernels (and cokernels too)

Problem
Will revisit same kernel multiple times

Solution
Trick: remember which variables you already tried in the cokernels

Problem: kernel you get for cokernel abc is same as for cba, but current
algorithm doesn’t know this and will find same kernel for both cubes

A little extra book keeping solves this -- see De Michelli pp 367-369

Page 34

© R. Rutenbar 2001, CMU 18-760, Fall 2001 67

Using Kernels and Co-KernelsUsing Kernels and Co-Kernels
What good are these?

Exactly the right component pieces for...
Extraction of a single-cube divisor from multiple expressions
Extraction of a multiple-cube divisor from multiple expressions

When you want a single-cube divisor: go looking for co-kernels
When you want a multiple-cube divisor: go looking for kernels

f

g

f = d•q1 + r1

g = d•q2 + r2
d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 68

Multilevel Synthesis Models: SummaryMultilevel Synthesis Models: Summary
Boolean network model

Like a gate network, but each node in network is an SOP form
Supports many operations to add, reduce, simplify nodes in network

Algebraic model & algebraic division
Simplified Boolean functions to behave like polynomials of real numbers
Lets you divide one Boolean function by another
function f = (divisor d)• (quotient q) + remainder r

Kernels / Co-kernels of a function
Kernel = cube-free quotient got by dividing by a single cube
Intersections of kernels of 2 functions f, g are where all the interesting
multiple-cube common subexpressions are to be found
Strong theorem here: Brayton-McMullen

Still have to figure out what the right common factors are to
have, given all this machinery...

