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(Lec 7) Multi-Level Minimize I:  Models & Methods(Lec 7) Multi-Level Minimize I:  Models & Methods
What you’ve seen so far...

2-level minimization a la ESPRESSO
Manipulates (reshapes) SOP covers of functions
Heuristic:  REDUCE - EXPAND - IRREDUNDANT

What’s left?
Multi-level minimization, where final form of logic network is not
just 2-level SOP AND-OR form

What do we need?
New, more general model of logic networks
New operators:  forms of division for Boolean functions
New heuristic minimization strategies to use this model + operators
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Where Are We?Where Are We?
Moving on to real logic synthesis--for multi-level stuff
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ReadingsReadings
DeMicheli has a lot of relevant stuff

Again, he worked on some of this at Berkeley and at IBM

Read this in Chapter 8
8.1  Intro:  take a look.
8.2  Models and Transforms--this is about the “Boolean network model”
8.3 The Algebraic Model -- how people do factoring for complex 
Boolean logic networks
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Why Multi-Level FormsWhy Multi-Level Forms
2-level too restrictive:  specific area vs delay tradeoff

Area = gates + literals (wires), ie, things that take space on a chip
Delay = max levels of logic gates required to compute function
2-level is minimum gate delay possible, but usually worst on area

area

delay

typical 2-level design =
many gates, but only 2 levels
of logic, so fastest possible

multi-level designs =
fewer gates, but > 2 levels

small,
few gates+lits

big,
many gates+lits

fastest, 2 levels

slower, >2 levels

© R. Rutenbar  2001,          CMU 18-760, Fall 2001   6

Why Multi-Level?Why Multi-Level?
Rarely see 2-level designs for really big things, mostly for 
pieces of bigger things

Even smallish things routinely done as multi-level

~1000 gate
“block” of logic

1 2 3 4 999

1000

?

This is usually NOT going to be the
preferred logic network structure...
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Real MultiLevel ExampleReal MultiLevel Example
…and this is a pretty small design, done by Synopsys DesignCompiler

Levels of
logic in
network

1  2       3        4        5      6        7        8        9 10    11
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Boolean Logic Network ModelBoolean Logic Network Model
Need more sophisticated model of these networks

New model:  Boolean Logic Network
Idea:  it’s a netlist of connected components, like a logic diagram, but 
now individual components can be arbitrary Boolean func’s

a
b

c

x

y

Ordinary gate netlist Same circuit as a 
Boolean logic network,

x, y are now Boolean functions

primary
inputs

primary
outputs

internal
vertices
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Boolean Logic NetworksBoolean Logic Networks
It’s just a graph, with:

Primary inputs (usually vars) 
Primary outputs (stuff network creates for other logic to consume)
Intermediate nodes that are themselves represented as Boolean 
functions...all in SOP form

Now what?
Look at some operators that one can use to manipulate these networks
Some are fairly simple structural operations on graphs
Some will require entirely new operators (like division)
Our derivation follows DeMicheli closely, sections 8.1 and 8.2
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Boolean Logic NetworksBoolean Logic Networks
Consider example from De Micheli

Let’s look at some operations on this network…

p = ce + de
q = a + b
r = p + a’
s = r + b’
t = ac + ad + bc + bd + e
u = q’c + qc’ + qc
v = a’d + bd + c’d + ae’
w = v
x = s
y = t
z = u

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z

Network Quality measure = ∑nodes ( literals ) = 
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Reminder:  Boolean Network ModelReminder:  Boolean Network Model
Remember what this picture means

It’s a graph
Has primary inputs and outputs
Internal nodes mean “here is an SOP-form Boolean function”
Edges means “here are signals going into/out of these functions”
#literals = count up all lits in every SOP equation in every Boolean node

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z

As gates it looks like this...
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Operations on Boolean NetworkOperations on Boolean Network
What’s the overall goal here?

Simplify the network – reduce total number of literals
Optimize timing – reduce delay from input to output thru gates, wires

3 basic types of operations
Add new network nodes: this is related to factoring—take “big” nodes 
and factor them into more, better, smaller nodes
Remove network nodes: take nodes that are “too small” and substitute 
them back into the fanout nodes that they feed
Simplify network nodes: no change in # of nodes, just simplify insides

A big set of possible operators in real implementations
Look at just a couple of examples…
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Network Ops:  EliminationNetwork Ops:  Elimination
Reducing #nodes:  Elimination

Removes an internal vertex by replacing it (adding its SOP expression) 
into all the other vertices it feeds
Note:  eliminate vertex for r requires substituting (p+a’) in s node

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

w

x

y

z

Σlits = 

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z
s=p+a’+b’
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Network Ops:  ExtractionNetwork Ops:  Extraction
Adding nodes:  Extraction

Create a new vertex that represents a common subexpression for 
>= 2 vertices, and add it to network
Substitute the output of the new vertex for common parts elsewhere 
Note that:    p = (c+d) e and      t=(c+d)(a+b) + e,     so extract     c+d

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ke

t=ka+kb+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z

k=c+d

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z

Σlits = 
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Network Ops:  SimplificationNetwork Ops:  Simplification
Simplifying a node:  2-Level Simplification

Run a 2-level minimizer (ESPRESSO!) at a vertex -- see if the SOP cover 
of the vertex gets simpler

Note -- if you don’t eliminate any vars, it’s a local transformation
If you actually eliminate a var, it’s global -- changes the network
Note:  note u = q’c+qc’+qc = q+c

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q+c

r=p+a’ s=r+b’

w

x

y

z

local change,
inside vertex only

a

b

c

d

e

v=a’d+bd+c’d+ae’

p=ce+de

t=ac+ad+bc+bd+e

q=a+b u = q’c+qc’+qc

r=p+a’ s=r+b’

w

x

y

z

Σlits = 
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Network Ops:  Iterative ImprovementNetwork Ops:  Iterative Improvement
Sort of like ESPRESSO loop

Iteratively apply these (and other) ops to network to try to improve it
Usually count literals (all wires into each node of the network)
or count (gates + literals)
Our example can simplify to this by applying these (and other) ops:

a

b

c

d

e

j=a’+b+c’

t=kq+e

q=a+b u = q+c

s=ke+a’+b’

w

x

y

z

k=c+d

v=jd+ae’Literals

Before:

After:   
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Network Ops:  ScriptsNetwork Ops:  Scripts
What do people really use to do multi-level optimization?

Programs like MIS II, SIS, HSIS, VIS (from Berkeley) 
Commercial tools from Synopsys, Synplify, Cadence, Avanti

What do multilevel synthesis tools look like?
Use Boolean network model
Provide collections of network operators
Users invoke scripts that run a sequence of these ops on their design

What’s a script look like...?
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ScriptsScripts
Here is a “famous” script originally from MIS II tool

The so-called “rugged” script
A sequence of network ops...

sweep;  eliminate -1
simplify -m nocomp
eliminate - 1

sweep;  eliminate  5
simplify -m nocomp
resub -a

fx
resub -a;  sweep

eliminate -1; sweep
full_simplify  -m nocomp
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Running Real Logic Synthesis:  SISRunning Real Logic Synthesis:  SIS
SIS is a Berkeley  multi-level synthesis tool

/afs/ece/class/ee760/sis     is the binary for IBM and SUN

UC Berkeley, SIS Development Version (compiled 2-Nov-95 at 6:54 PM)
sis>

Command prompt
Type “help” to get a list of all commands
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Rugged Ops:  SweepRugged Ops:  Sweep
Sweep ...

Eliminates all single-input 
vertices 
Eliminates vertices with a 
constant function (ie, ==0, ==1 
always)
Sort of a basic “clean up” op

sweep;  eliminate -1
simplify -m nocomp
eliminate - 1

sweep;  eliminate  5
simplify -m nocomp
resub -a

fx
resub -a;  sweep

eliminate -1; sweep
full_simplify  -m nocomp
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Sweep ExamplesSweep Examples

Sweep examples

a

G

H

Q

F = a

G = F

H = F

Q = a + a’

a

G

H

Q

sweep
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Running sweep in SISRunning sweep in SIS
SIS session

sis> read_eqn sweep.eqn
sis> print

F = a
{G} = F
{H} = F
{Q} = a + a'

sis> sweep
sis> print

{Q} = a + a'
{G} = a
{H} = a

F = a ;
G = F ;
H = F ;
Q = a + a' ;

Change in total literal count:

UNIX file:  sweep.eqn

a

G

H

Q

F = a

G = F

H = F

Q = a + a’
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Aside:  SIS SyntaxAside:  SIS Syntax
For a typical eqn format input file

+    means    OR
*    means    AND
“  “  (a space)  also means AND
‘    (one apostrophe) means NOT (on a literal)
( )   used for grouping
!=    means   EXOR
==   means   EXNOR
!(   ) means   NEGATE the contents of the parens
F  (a capital letter)  usually means a function, output of a network node
x  ( a small letter)  usually means a primary input to the overall network

SIS “print” output
{G}   means  G is a primary output of the network (nobody else eats it)
[31]  means SIS creates a new Boolean network node during 
simplification, and it gives you a number in brackets as an ID.
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Network Ops:  EliminateNetwork Ops:  Eliminate
Eliminate  <threshold>...

Eliminates all nodes in the network 
whose “value” is less than or equal 
to threshold.
Value of node

=Number of times the node is 
used in the factored form for 
each of its fanout nodes
=Number of lits saved by NOT 
eliminating the node

Eliminates node by  collapsing it 
into its fanout nodes
“-1” means eliminate nodes only 
used once elsewhere in network

sweep;  eliminate -1
simplify -m nocomp
eliminate -1

sweep;  eliminate  5
simplify -m nocomp
resub -a

fx
resub -a;  sweep

eliminate -1; sweep
full_simplify  -m nocomp
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“Value” of Elimination“Value” of Elimination
Scenario

We have a vertex that has L literals in it;   It feeds N other vertices
What happens if we eliminate it?  What is “value” of this?
Answer is:  change in total number of literals in design

F = L literals

G1 = F + ...

G2 = F + ...

GN = F + ...

•
•
•

Total literals before  =

We eliminate vertex F

Total literals after =
Change = value =

G1 = (L literals) + stuff…
eliminate

G2 = (L literals) + stuff…

G2 = (L literals) + stuff…

•
•
•
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Eliminate ExamplesEliminate Examples

Eliminate -1

Eliminate  5

F = abc

G1 = F+d

F = ab G = F+x eliminate G = ab+x

G2 = F+ef

G3 = F+gh

G4 = F+de Σlits = 

eliminate

G1 = abc +d

G2 = abc +ef

G3 = abc +gh

G4 = abc +de
Σlits = 
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Running eliminate in SISRunning eliminate in SIS
SIS session

sis> read_eqn elim.eqn
sis> print

F = a b c
{G1} = F + d
{G2} = F + e f
{G3} = F + g h
{G4} = F + de

sis> eliminate 1
sis> print

F = a b c
{G1} = F + d
{G2} = F + e f
{G3} = F + g h
{G4} = F + de

F = a b c ;
G1 = F + d ;
G2 = F + e f ;
G3 = F + g h ;
G4 = F + de ;

UNIX file: elim.eqn

No change. Why?  
Cost to eliminate F node is +5 literals.
But, we set threshold to +1 literal, so—eliminate
won’t do anything here.  Cost is too high.

© R. Rutenbar  2001,          CMU 18-760, Fall 2001   28

Running eliminate in SISRunning eliminate in SIS
SIS session continued

sis> eliminate 3
sis> print

F = a b c
{G1} = F + d
{G2} = F + e f
{G3} = F + g h
{G4} = F + de

sis> eliminate 5
sis> print

{G1} = a b c + d
{G2} = a b c + e f
{G3} = a b c + g h
{G4} = a b c + de

sis>

No change. Why?   Same reason.
Cost to eliminate F node is +5 literals.
But, we set threshold to +3 literals, so—eliminate
won’t do anything here.  Cost is too high.

Now it does it.

G1 = abc +d

G2 = abc +ef

G3 = abc +gh

G4 = abc +de
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Network Ops:  SimplifyNetwork Ops:  Simplify
simplify

Run ESPRESSO on each node
Minimize SOP 2-level form of each
“-m nocomp” says don’t try to 
compute the full offset  for each 
node-- makes it run faster

full_simplify
Same as simplify, but uses a larger 
set of don’t cares...
...works harder to try to get a 
better (smaller SOP) answer

sweep;  eliminate -1
simplify -m nocomp
eliminate -1

sweep;  eliminate  5
simplify -m nocomp
resub -a

fx
resub -a;  sweep

eliminate -1; sweep
full_simplify  -m nocomp
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Simplify ExamplesSimplify Examples

Simplify

G1 = a + b + c

G = a + a’

F = a + a’b + c

1

simplify

simplify

Goal is just to “clean up” insides of each
node in the Boolean network



Page 16

© R. Rutenbar  2001,          CMU 18-760, Fall 2001   31

Network Ops: ResubNetwork Ops: Resub
Resub -a

Substitute each node in the 
network into each other node in 
the network
In other words, for each pair of 
nodes S, T, checks if S is a factor of 
T, or if T is a factor of S
Tries to use both the true and 
complemented form of the output 
of each node it tries to substitute
Loops until network stops getting 
“better”, ie, literal count stops 
decreasing
“-a” means that   algebraic division 
is how it checks to see if one node 
can substitute (divide) into another
(We talk about algebraic division 
next -- don’t worry...)

sweep;  eliminate -1
simplify -m nocomp
eliminate -1

sweep;  eliminate  5
simplify -m nocomp
resub -a

fx
resub -a;  sweep

eliminate -1; sweep
full_simplify  -m nocomp
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Resub ExampleResub Example

Resub example 1

Resub example 2

resub

F = ab 

G = ab+c

H = ab+e

F = ab
G = F +c

H = F+e

resub

F = ab 

G = ab+c

H = a’ + b’ + cd

F = ab
G = F +c

H = F’ +cd

Note: F was
complemented
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Running resub in SISRunning resub in SIS
SIS session

sis> read_eqn resub.eqn
sis> print

{F} = a b
{G} = a b + c
{H} = a b + e

sis> resub -a
sis> print

{F} = a b
{G} = {F} + c
{H} = {F} + e

F = a b ;
G = a b + c ;
H = a b + e ;

UNIX file: resub.eqn

F = ab
G = F +c

H = F+e
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Network Ops: FxNetwork Ops: Fx
Fx

Extracts common subexpressions
that are either

A single cube (eg, b’cd)
A double cube (eg, ab + b’cd)

Result is a new nodes in the 
network that represent these 
common “factors” removed
Note that after you get these 
factors, you run “resub” to see 
which ones are worth keeping

…ie, if it made the network 
worse to factor them out,
resub will put the factors back 
into the fanout nodes

sweep;  eliminate -1
simplify -m nocomp
eliminate -1

sweep;  eliminate  5
simplify -m nocomp
resub -a

fx
resub -a;  sweep

eliminate -1; sweep
full_simplify  -m nocomp



Page 18

© R. Rutenbar  2001,          CMU 18-760, Fall 2001   35

fx Examplefx Example

fx  example

fx N = ab+c
F = N + x

G = Nx+d

H = ab+d

F = ab + c + x

G = abx + cx + d

H = ab + d
Fx will conside several 

potential factors:
ab,  ab+c,

then decide which
ones are worth extracting

© R. Rutenbar  2001,          CMU 18-760, Fall 2001   36

Running fx in SISRunning fx in SIS
SIS session

sis> read_eqn fx.eqn
sis> print

{F} = a b + c + x
{G} = a b x + c x + d
{H} = a b + d

sis> fx
sis> print

{F} = [31] + x
{G} = [31] x + d
{H} = a b + d
[31] = a b + c

F = a b + c + x;
G = a b x + c x + d ;
H = a b + d ;

UNIX file: fx.eqn

[31] = ab+c
F = [31] + x

G = [31]x+d

H = ab+d
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resub != fxresub != fx
fx tries to find NEW common factors

It adds nodes to the network to do this
Tries to find good (usable) common subexpressions

resub uses what is already in network
It CANNOT go find or “extract” new factors
It just looks at what nodes are already around in network
It tries to use these to substitute one node into another to save literals

So….
Do fx first:         create a bunch of good-looking common factors
Do resub next:  try to use these factors to improve network
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Rugged ScriptRugged Script
Now it’s possible to go back 
and really read the script

It should make sense...
4 major phases of simplification
Goes from easy optimizations to 
harder,  more expensive ones
Uses ESPRESSO to do each 
individual node
Uses algebraic division to find 
good common subexpressions
Tracks literal count to judge 
quality of network

sweep;  eliminate -1
simplify -m nocomp
eliminate -1

sweep;  eliminate  5
simplify -m nocomp
resub -a

fx
resub -a;  sweep

eliminate -1; sweep
full_simplify  -m nocomp

Housekeeping

First round of
“easy” factoring

Second round of
“aggressive” factoring

Optimize
each node
aggressively



Page 20

© R. Rutenbar  2001,          CMU 18-760, Fall 2001   39

Multilevel Synthesis:  What’s Left?Multilevel Synthesis:  What’s Left?
Factoring: how do we really do it?

Operators we don’t have are those related to factoring out (extracting) 
common subexpressions from multiple vertices

Allow us to do the substitution, decomposition, extraction ops
(Simplification op is just ESPRESSO on 1 vertex)
We need this to be able to do the “fx” factoring

New model of Boolean functions:  Algebraic model
Yet another way of thinking about Boolean functions that allows us easily 
to do several division-like operations
Term “algebraic” comes from pretending that Boolean expressions 
behave like polynomials of real numbers, not like Boolean algebra
Big new Boolean operator:  algebraic division
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Algebraic ModelAlgebraic Model
Idea:  keep just those rules (axioms) that work for polynomials 
of reals AND Boolean algebra, dump rest

Real numbers

a•b = b•a
a+b = b+a
a•(b•c) = (a•b)•c
a+(b+c) = (a+b)+c
a•(b+c) = a•b + a•c
a•1 = a    a•0 = 0
a+0 = a

Boolean algebra

a•b = b•a
a+b = b+a
a•(b•c) = (a•b)•c
a+(b+c) = (a+b)+c 
a•(b+c) = a•b+a•c
a•1 = a   a•0 = 0
a+0 = a

a+a’ = 1                          a•a’ = 0
a•a = a                            a+a = a
a+1 = 1 
a+(b•c) = (a+b)•(a+c)

SAME

NOT 
ALLOWEDx
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Algebraic ModelAlgebraic Model
In English

Only get to use algebra rules from real numbers
A variable and its complement are treated as totally unrelated

Idea
Boolean functions represented / manipulated as SOP expressions
Each product term in such an expression is just a set of variables
The expression itself is just a set of these products (cubes)
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Algebraic DivisionAlgebraic Division
Model for factoring

Given function  f we want to factor like this:

(just like regular numbers, eg,  15 = 7 • 2 + 1)
Boolean example

divisor quotient remainder (if =0, then we say the 
say quotient is a factor)

f = d•q + r
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Algebraic DivisionAlgebraic Division
Example

f = ac + ad + bc + bd + e          want  f = d • q   +   r

Divisors  (d)              Quotient (q) Remainder (r) Factor?
ac+ad+bc+bd+e
a+b
c+d
a
b
c
d
e
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Algebraic DivisionAlgebraic Division
Turns out there is a very nice algorithm for this

Inputs
A Boolean expression A and a divisor (to divide by) D, represented as 
sets of cubes (and each cube a set of literals)

Output
Quotient  q = A/D  = cubes in quotient, or 0 if none
Remainder r = cubes in remainder, or 0 if D was a factor
ie,  figures out q, r so that   A = D•q+ r  = D•(A/D) + r

Strategy
Cubewise walk thru cubes in divisor D, trying to divide them into A
...being careful to track which cubes do divide into A
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Algebraic Division AlgorithmAlgebraic Division Algorithm
Algorithm

AlgebraicDivision( A, D) { /* divide D into A */

for ( each cube d in divisor D ) {
let C = { cubes in A that contain this product term “d” };
if ( C is empty )  {

return (  quotient = 0,  remainder = A);
}
let C = cross out literals of cube “d” in each cube of C;
if ( d is the first cube we have looked at in divisor D ) 

let Q = C;
else  Q = Q ∩ C;

}
R = A - ( Q * B );
return (  quotient = Q,  remainder = R)

}

Example:
Cube xyzw contains
product term “yz”

Example:
Suppose C = xyz + yzw +pqyz
and d = “xy”. Then crossing
out all the “xy” parts yields
z + y + pq

bugfix

bugfix
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Algebraic Division: ExampleAlgebraic Division: Example
A/D:  A = axc + axd + axe + bc + bd + e     D = ax + b

axeaxe

Q =

D cube: b
C = …

Q = 
e

bd
bc

axdaxd
axcaxc

D cube: ax
C = …A cube  

R   = (axc + axd + axe + bc + bd + e) – [ (ax+b)*( )]

Easiest way manually is to make this
table:  

one row per cube in A, 
one column per cube in D,
bottom row to evolve Quotient Q

and, when done, remember to get remainder

Remainder R = A – Q*D
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Algebraic Division: WarningAlgebraic Division: Warning
Remember the basic model assumptions

Cannot do any “boolean” simplification, only “algebraic”

So what?
OK, suppose you have this

You must transform it to something like this...

Because you MUST treat the true and compl forms of var as different

A = ab’c’ + ab + ac + bc                  B = ab + c’    want A / B
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One More Constraint:  Redundant CubesOne More Constraint:  Redundant Cubes
To do A/D, we need function A not to have redundant cubes

Redundant meaning formally minimal with respect to single-cube 
containment, ie, “completely covered by other cubes in SOP cover”

F = a + ab + bc is redundant
D = a is the divisor;  we want to do F/D

ab
c

now:  compute  F / D, ie,   F / a
use our algebraic division algorithm...

00   01   11    10
0

1
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Multilevel Synthesis Models:  Where are We?Multilevel Synthesis Models:  Where are We?
Given Boolean A, D, you can compute A = Q*D + R easily

This is great—but its still not enough
Real problem: I give you n functions F1, F2, … Fn, and want to find a 
set of good common divisors di 

How to find?
Case 1:  divisors d that are just 1 cube (1 product term), eg, d = ab
Case 2:  “bigger” multiple-cube divisors, eg  d = ab + c’d + e

factor d1 = ab+c
F1 = d1 + x

F2 = (d1)x+q

F3 = ab+q

F1 = ab + c + x

F2 = abx + cx + q

F3 = ab + q
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New Idea:  KernelsNew Idea:  Kernels
Where to look for multiple cube divisors?   Kernels

Kernel of a Boolean  expression f is:

A cube-free quotient of the expression f that results when you 
divide f by a divisor that is itself a single cube (ie, 1 product term)
Co-kernel of f is:

divisor d

quotient q

expression f

remainder r

f = d•q + r

d = 1 cube

kernel if cube-free

expression f

remainder r

f = d•q + r
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KernelsKernels
Cube-free means...?

Means you cannot factor out a single cube (product term) divisor that 
leaves no remainder
Technically -- has no one cube that is a factor of expression
So, you divide expression f by a cube, look at result, if you can pull out a 
cube -- any cube -- with 0 remainder, it’s not a kernel

Expression f f=d*q+r Cube-free?
a

a+b

ab + ac

abc + abd

ab + acd + bd 
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KernelsKernels
Kernels of expression  f denoted K(f)

Look at example

Divisor cube d f= d • q + r Is it a Kernel of f?
1 (1)(abc+abd+bcd)+0 No, has cube = b as factor
a
b
c
d
ab
ac
ad
bc
bd
cd
abc
...

f = abc + abd + bcd
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KernelsKernels
What don’t we know yet?

Why we should care about kernels
If we should care, how to find them

Why you should care:
Theorem: Brayton & McMullen

Expressions f, g have a common multiple-cube divisor d

if and only if

there are kernels   k1 ε K(f),  k2 ε K(g)  
such that   d  ε  κ1 ∩ κ2

and   | k1 ∩ κ2 |  ≥  2
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Kernel TheoremKernel Theorem
OK, let’s try that in English...

Start with expressions f and g
Look at sets of kernels of each  K(f),   K(g)
Since k1 is a kernel of f, k2 is a kernel of g, we know that

Remember:  k1, k2 are cube-free, they have to be multi-term SOP 
expressions lacking a common factorable cube

f = cube1 • k1 + remainder1
g = cube2 • k2 + remainder2

suppose k1 = (stuff1 + Xcube + Ycube + Zcube)
suppose k2 =  (stuff2 + Xcube + Ycube + Zcube)

then k1 ∩ k2 = terms in both = (Xcube + Ycube + Zcube)
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KernelsKernels
So if we substitute back into f, g

...but we can rewrite this, pulling out k1 ∩ k2 = (X  + Y  + ... ) 

...but now it’s clear that k1 ∩ k2 = (X  + Y  + ... ) 
is a common, multiple-cube divisor!  It’s a nice, big common factor!

f = cube1 • (stuff1 + Xcube + Ycube + Zcube) + remainder1
g = cube2 • (stuff2 + Xcube + Ycube + Zcube) + remainder2

f = (Xcube + Ycube + Zcube )•cube1 + [cube1•stuff1 + remainder1]
g =(Xcube + Ycube + Zcube )•cube2 + [cube1•stuff2 + remainder2]
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KernelsKernels
That was NOT a Proof!!

...it was just an example, but it illustrates what’s going on

Why is Brayton/McMullen  so important?
It’s a necessary and sufficient condition

It’s hugely practical:  the only place to look for multiple-cube factors is 
in intersections of the kernels of your functions.  There’s no place else.

There is a common
multiple-cube divisor
for your functions f, g

You can find kernels in f, and in g
such that intersection of kernels 
gives expression with >=2 cubes;

...that intersection is your divisor

IFF
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Kernels:  ExampleKernels:  Example
Consider this f, g

f = ae + be + cde + ab                      g = ad + ae + bd + be + bc

K(f) Kernel Co-kernel
a+b+cd e
b+e a
a+e b
ae+be+cde+ab 1

K(g) Kernel Co-kernel
a+b d or e
d+e a or b
d+e+c b
ad+ae+bd+be+bc 1

Intersecting these 2 kernels:  (a+b+cd) * (a+b) = (a+b)

(a+b) is a divisor we can consider for both f, g
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KernelsKernels
So, they are quite useful, but how to get them?

Another recursive algorithm (are we surprised...?)
There are 2 more useful properties of kernels we need to see first…

Start with a function f and a kernel k1 in K(f)

First: a new, interesting question:  what about K( k1) ??
k1 is a perfectly nice Boolean expression, so its got its own kernels
Do these kernels have anything interesting to say about K(f)...?

f = cube1 • k1 + remainder1
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KernelsKernels
Look at K( k1 )

Suppose  k2 is a kernel in K( k1 ), then we know

Substitute this in for k1 in original expression for f

Neat trick:  cube1•cube2 is itself just another single cube, so rewrite to 
emphasize this fact:

f = cube1 • k1 + remainder1
=

k1 = cube2 • k2 + remainder2
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Kernel HierarchyKernel Hierarchy
So , what does this say?

k2 is itself a kernel of function f !
There is a hierarchy of kernels, each inside the next, up the hierarchy

Terminology
A kernel k in K(f) is a level 0 kernel if it has no kernels inside it except 
itself

In English:  only cube you can pull out is ‘1’ and get a cube-free 
quotient as the result

A kernel k in K(f) is a level i kernel if it contains only kernels 
of level < i, and just one kernel at level i which is itself

In English:  a level-1 kernel only has level-0 kernels inside it.
A level-2 kernel only has level-1 kernels in it, etc…
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Kernel HierarchyKernel Hierarchy
2nd useful result [Brayton et al]

Co-kernels of a Boolean expression in SOP form correspond to intersections 
of 2 or more of its cubes in this SOP form

NOTE: Intersections here means specifically that we regard a cube as a 
set of literals, and look at common subsets of literals

Note: this is not like “AND” for products.  

Example

ace + bce + de + g

ace ∩ bce  = ce    => ce is a potential co-kernel

ace ∩ bce ∩ de = e  => e is a potential co-kernel
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Kernel HierarchyKernel Hierarchy
How do we use these 2 results?

Find the kernels recursively –
Whenever we find one, call kernel( ) routine on it, so find (if any) 
lower level kernels inside

Use algebraic division to divide function by potential co-kernels, to 
generate recursive calls…

…but be smart: co-kernels are intersections of the cubes
...if there’s at least 2 cubes, then look at the intersection C of the 
literals in those cubes and use the result as our co-kernel cube 
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Kernel AlgorithmKernel Algorithm
Algorithm is then...

FindKernels( expression F) {
K = null;
for ( each variable x in F  ) {

if ( there are at least 2 cubes in F that have variable x ) {
let S = { cubes in F that have variable x in them };
let c = cube that results from intersection of all cubes in S,

this will be the product of just those literals
that appear in each of these cubes in S;

K = K ∪ FindKernels( F / c ) ;
}

}
K = K ∪ F ;
return( K )

}

algebraic division, but
simpler since it always
just divides by exactly 
1 cube, a simple product term

Function F is always its
own kernel, with
trivial cokernel = 1
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Kerneling ExampleKerneling Example
To start, divide f by each of the variables, and use to recurse

We’re looking for co-kernels with ONE variable in them
But—be smart, it cannot be a cokernel unless its in at least 2 cubes

f = ace + bce + de + g
a

b c d e g
cubes wi c=

C =∩=

f/C =

recurse on:

cubes wi e=

C = ∩=

f/C =

recurse on:

no recurs
only 1 
cube wi a

no recurs
only 1 
cube wi b

no recurs
only 1 
cube wi d

no recurs
only 1 
cube wi e
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Kernel Hierarchy, Example RevisitedKernel Hierarchy, Example Revisited
With this algorithm, overall recursion tree looks like this

f = ace + bce + de + g
a

b c d e g
cubes=
C = 
f/C =

cubes=
C = 
f/C =

cubes=
C = 
f/C =

a b c d e g
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Kernel HierarchyKernel Hierarchy

With this algorithm...
Can find all the kernels (and cokernels too)

Problem
Will revisit same kernel multiple times

Solution
Trick: remember which variables you already tried in the cokernels

Problem: kernel you get for cokernel abc is same as for cba, but current 
algorithm doesn’t know this and will find same kernel for both cubes

A little extra book keeping solves this -- see De Michelli pp 367-369
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Using Kernels and Co-KernelsUsing Kernels and Co-Kernels
What good are these?

Exactly the right component pieces for...
Extraction of a single-cube divisor from multiple expressions
Extraction of a multiple-cube divisor from multiple expressions

When you want a single-cube divisor:        go looking for co-kernels
When you want a multiple-cube divisor:    go looking for kernels

f

g

f = d•q1 + r1

g = d•q2 + r2
d
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Multilevel Synthesis Models: SummaryMultilevel Synthesis Models: Summary
Boolean network model

Like a gate network, but each node in network is an SOP form
Supports many operations to add, reduce, simplify nodes in network

Algebraic model & algebraic division
Simplified Boolean functions to behave like polynomials of real numbers
Lets you divide one Boolean function by another
function   f =  (divisor d )• (quotient q) +    remainder r

Kernels / Co-kernels of a function
Kernel = cube-free quotient got by dividing by a single cube
Intersections of kernels of 2 functions f, g are where all the interesting  
multiple-cube common subexpressions are to be found
Strong theorem here: Brayton-McMullen

Still have to figure out what the right common factors are to 
have, given all this machinery...


