(Lec 7) Multi-Level Minimize I: Models & Methods

X What you’ve seen so far...
» 2-level minimization a la ESPRESSO
> Manipulates (reshapes) SOP covers of functions
> Heuristic: REDUCE - EXPAND - IRREDUNDANT

N What’s left?

» Multi-level minimization, where final form of logic network is not
just 2-level SOP AND-OR form

N What do we need?

» New, more general model of logic networks
» New operators: forms of division for Boolean functions
» New heuristic minimization strategies to use this model + operators

© R. Rutenbar 2001, CMU 18-760, Fall 2001 1

Copyright Notice

© Rob A. Rutenbar, 2001
All rights reserved.

You may not make copies of this
material in any form without my
express permission.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 2

Page 1

Where Are We?

N Moving on to real logic synthesis--for multi-level stuff

M T W Th F
Aug27 28 29 [30 [31 ||
Sep[3 [4 [5 [6 [7 |2
(o i1 12 13 Ti4 |3
7 18 19 20 [21 |4
24 [25 26 [27 28 |5
Oct[1 2 [3 KHNS |6

(8 T9 o [ir Ji2 J7
05 _T1te N1z _is TEIM 8
PPEl23 24 25 26 |9
29 30 Bl [T _[2 |10

Novis 6 [7 [8 [9 J1i1I
(12 13 [14 Ji5_Ji6] 12
Thnxgive[l9 20 FINIFVIIFEIN 13
26 [27 [28 [29 [30] 14

Dec[3 4 [5 [6 [7 115
(o Jr1_Ji12 13 Ji4 16

Introduction

Advanced Boolean algebra
JAVA Review

Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement

Routing

Static timing analysis
Electrical timing analysis
Geometric data structs & apps

© R. Rutenbar 2001, CMU 18-760, Fall 2001 3

N DeMicheli has a lot of relevant stuff
» Again, he worked on some of this at Berkeley and at IBM

N Read this in Chapter 8
» 8.1 Intro: take a look.

» 8.2 Models and Transforms--this is about the ‘“Boolean network model”

» 8.3 The Algebraic Model -- how people do factoring for complex

Boolean logic networks

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 4

Page 2

Why Multi-Level Forms

N 2-level too restrictive: specific area vs delay tradeoff
» Area = gates + literals (wires), ie, things that take space on a chip
» Delay = max levels of logic gates required to compute function
» 2-level is minimum gate delay possible, but usually worst on area

multi-level designs =

de:fly / fewer gates, but > 2 levels

slower, >2 levels . .
typical 2-level design =

any gates, but only 2 levels
of logic, so fastest possible

fastest, 2 levels ——

—> area
small, big,

few gatestlits many gates+lits

© R. Rutenbar 2001, CMU 18-760, Fall 2001 5

Why Multi-Level?

N Rarely see 2-level designs for really big things, mostly for
pieces of bigger things

» Even smallish things routinely done as multi-level

999

?
L]
~1000 gate ‘

“block’ of logic

This is usually NOT going to be the
preferred logic network structure...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 6

Page 3

Real MultiLevel Example

» ...and this is a pretty small design, done by Synopsys DesignCompiler

o o T e
;_'E}D B> B:D > B} BD-
| ! = i G |
B> g e R
| Ll e it D> B:) |
f Dty DBD-B}B}
. iy I O | R Dot
=S s
: Levels of
12 3 4 5 6 7 8 9 10 11 logic in
network
©R. Rutenbar 2001, CMU 18-760, Fall 2001 7

Boolean Logic Network Model

N Need more sophisticated model of these networks

N New model: Boolean Logic Network

» Idea: it’s a netlist of connected components, like a logic diagram, but
now individual components can be arbitrary Boolean func’s

Same circuit as a

Boolean logic network,
X, y are now Boolean functions

' []
c— y []

Ordinary gate netlist

a___

AD
” 1

primary internal primary
inputs Vertices outputs
© R. Rutenbar 2001, CMU 18-760, Fall 2001 8

Page 4

Boolean Logic Networks

t’s just a graph, with:
» Primary inputs (usually vars)
» Primary outputs (stuff network creates for other logic to consume)

» Intermediate nodes that are themselves represented as Boolean
functions...all in SOP form

X Now what?
» Look at some operators that one can use to manipulate these networks
» Some are fairly simple structural operations on graphs
» Some will require entirely new operators (like division)
» Our derivation follows DeMicheli closely, sections 8.1 and 8.2

© R. Rutenbar 2001, CMU 18-760, Fall 2001 9

Boolean Logic Networks

N Consider example from De Micheli

» Let’s look at some operations on this network...

w=v t

p =ce +de ‘

g=a+b ' v=a'd+bd+c’d+ae’ w
r=p+a g ! D
s=r+b’

t=ac+ad+bc+bd+e 0 FEED ‘7’ r=p+a’ q = E
v=a'd +bd + c'd + ae’ i&«y t=ac+ad+bc+bd+e y

’ q=a+b ‘—’ u = q’ctqc’+qc ‘7

N < X

I unn

[=]
)

Network Quality measure = z (literals) =

nodes

© R. Rutenbar 2001, CMU 18-760, Fall 2001 10

Page 5

Reminder: Boolean Network Model

X Remember what this picture means
» It’s a graph
» Has primary inputs and outputs
» Internal nodes mean “here is an SOP-form Boolean function”
» Edges means “here are signals going into/out of these functions”
» #literals = count up all lits in every SOP equation in every Boolean node

As gates it looks like this...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 11

Operations on Boolean Network

X 'What’s the overall goal here?
» Simplify the network - reduce total number of literals
» Optimize timing - reduce delay from input to output thru gates, wires

3 basic types of operations

» Add new network nodes: this is related to factoring—take “big” nodes
and factor them into more, better, smaller nodes

» Remove network nodes: take nodes that are “too small’ and substitute
them back into the fanout nodes that they feed

» Simplify network nodes: no change in # of nodes, just simplify insides

A big set of possible operators in real implementations

» Look at just a couple of examples...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 12

Page 6

Network Ops: Elimination

N Reducing #nodes: Elimination
» Removes an internal vertex by replacing it (adding its SOP expression)
into all the other vertices it feeds
» Note: eliminate vertex for r requires substituting (p+a’) in s node

w
S e
v

’ q=a+b ‘—’ u = q’ctqc’+qc ‘7@

© R. Rutenbar 2001, CMU 18-760, Fall 2001 13

Network Ops: Extraction

W Adding nodes: Extraction
» Create a new vertex that represents a common subexpression for
>= 2 vertices, and add it to network
» Substitute the output of the new vertex for common parts elsewhere

» Note that: p=(ctd)e and t=(ctd)(atb)+e, soextract c+d

 v=a’d+bd+c’d+ae’ } E

q s=r+b’ E
-y

oz

’ r=p+a’

© R. Rutenbar 2001, CMU 18-760, Fall 2001 14

Page 7

Network Ops: Simplification

N Simplifying a node: 2-Level Simplification
» Run a 2-level minimizer (ESPRESSO!) at a vertex -- see if the SOP cover
of the vertex gets simpler
> Note -- if you don’t eliminate any vars, it’s a local transformation

> If you actually eliminate a var, it’s global -- changes the network

> Note: note u = q’ctqc’+qc = q+c

7 v=a’d+bd+c’d+ae’ } E

q s=r+b’

x
v

[v]

local change,
inside vertex only

© R. Rutenbar 2001, CMU 18-760, Fall 2001 15

Network Ops: Iterative Improvement

X Sort of like ESPRESSO loop
» Iteratively apply these (and other) ops to network to try to improve it
» Usually count literals (all wires into each node of the network)
or count (gates + literals)
» Our example can simplify to this by applying these (and other) ops:

Literals

Before:

After:

© R. Rutenbar 2001, CMU 18-760, Fall 2001 16

Page 8

Network Ops: Scripts

X'What do people really use to do multi-level optimization?
» Programs like MIS II, SIS, HSIS, VIS (from Berkeley)
» Commercial tools from Synopsys, Synplify, Cadence, Avanti

N 'What do multilevel synthesis tools look like?
» Use Boolean network model
» Provide collections of network operators
» Users invoke scripts that run a sequence of these ops on their design

N 'What’s a script look like...?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 17

N Here is a “famous” script originally from MIS II tool

N The so-called “rugged” script

» A sequence of network ops...

sweep; eliminate -1
simplify -m nocomp
eliminate - 1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

© R. Rutenbar 2001, CMU 18-760, Fall 2001 18

Page 9

Running Real Logic Synthesis: SIS

SIS is a Berkeley multi-level synthesis tool
» /afs/ecelclass/ee760/sis is the binary for IBM and SUN

UC Berkeley, SIS Development Version (compiled 2-Nov-95 at 6:54 PM)
sis>

Command prompt
Type “help” to get a list of all commands

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

Rugged Ops: Sweep

X Sweep ...

» Eliminates all single-input
vertices

sweep; eliminate -1
simplify -m nocomp

» Eliminates vertices with a eliminate - 1

constant function (ie, ==0, ==|

l
always) sweep; eliminate 5

simplify -m nocomp
resub -a

» Sort of a basic “clean up” op

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

© R. Rutenbar 2001, CMU 18-760, Fall 2001 20

Page 10

Sweep Examples

Sweep examples

E‘\ mﬁ

=]
o] =] [@]

© R. Rutenbar 2001, CMU 18-760, Fall 2001 21

Running sweep in SIS

N SIS session

sis> read_eqn sweep.eqn UNIX file: sweep.eqn

sis> print ny F=a;

F=a G:F;
{G}=F K : H=F;
{H}=F ' @g Q=a+ta';
Q=a+a

sis> sweep

sis> print
{Q}=a+a’
{G}=a
{H}=a

Change in total literal count:

© R. Rutenbar 2001, CMU 18-760, Fall 2001 22

Page 11

Aside: SIS Syntax

X For a typical eqn format input file
» + means OR
» * means AND
» ¢ “ (aspace) also means AND
» ¢ (one apostrophe) means NOT (on a literal)
» () used for grouping
» != means EXOR
» == means EXNOR
» !() means NEGATE the contents of the parens
» F (a capital letter) usually means a function, output of a network node
» x (asmall letter) usually means a primary input to the overall network

SIS “print” output

» {G} means G is a primary output of the network (nobody else eats it)

» [31] means SIS creates a new Boolean network node during
simplification, and it gives you a number in brackets as an ID.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

Network Ops: Eliminate

W Eliminate <threshold>...

. . sweep; eliminate -1
» Eliminates all nodes in the network weep,
« » s simplify -m nocomp
whose ‘“value” is less than or equal liminate -1
to threshold. eliminate -

» Value of node

sweep; eliminate 5
> =Number of times the node is simplify -m nocomp

used in the factored form for
each of its fanout nodes

> =Number of lits saved by NOT fx
eliminating the node

resub -a

resub -a; sweep
» Eliminates node by collapsing it
into its fanout nodes eliminate -1; sweep

» “-1”” means eliminate nodes only full_simplify -m nocomp
used once elsewhere in network

© R. Rutenbar 2001, CMU 18-760, Fall 2001 24

Page 12

“Value” of Elimination

N Scenario
» We have a vertex that has L literals in it; It feeds N other vertices
» What happens if we eliminate it? What is “value” of this?
» Answer is: change in total number of literals in design

w We eliminate vertex F
T T eiE L s
@ <_G2= (L literals) + stuff... >

@ @ (L literals) + stD

Total literals before = Total literals after =
Change = value =

© R. Rutenbar 2001, CMU 18-760, Fall 2001 25

Eliminate Examples

Eliminate -1

E—Er M)

Eliminate 5

ciniio
D o
2|its= G4 ~abo vde 2lits =

Joet

© R. Rutenbar 2001, CMU 18-760, Fall 2001 26

Page 13

Running eliminate in SIS

N SIS session

sis> read_eqn elim.eqn UNIX file: elim.eqn
sis> print F=abc;
F=abc Gl=F+d;
_ G2=F+ef;
{GI}=F+d G3=F+gh;
{G2}=F+ef G4=F +de;
{G3}=F+gh
{G4} =F + de
sis> eliminate |
sis> print
F=abc
{GI}=F+d No change. Why?
{G2}=F +ef Cost to eliminate F node is +5 literals.
_ But, we set threshold to +1 literal, so—eliminate
{G3}=F+gh , . . .
won’t do anything here. Cost is too high.
{G4} =F + de

© R. Rutenbar 2001, CMU 18-760, Fall 2001 27

Running eliminate in SIS

N SIS session continued

sis> eliminate 3

sis> print
F=abc
{Gl}=F+d No change. Why? Same reason.
{G2}=F+ef Cost to eliminate F node is +5 literals.
(G3}=F+gh But, we set threshold to +3 literals, so—eliminate
(G4} - E i won’t do anything here. Cost is too high.
= + de

sis> eliminate 5

sis> print
{Gl}=abc+d
{G2}=abc+tef
{G3}=abc+gh
{G4}=abc+de G4 = abe +de

sis>

Now it does it.

BoRk

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

Page 14

Network Ops: Simplify

Usimplify
» Run ESPRESSO on each node
» Minimize SOP 2-level form of each

» ‘“-m nocomp’’ says don’t try to
compute the full offset for each
node-- makes it run faster

N full_simplify

» Same as simplify, but uses a larger
set of don’t cares...

» ...works harder to try to get a
better (smaller SOP) answer

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

Simplify Examples

Simplify

Graranre> B Erzarbre>

ComeraD> ET)

@

Goal is just to “clean up” insides of each
node in the Boolean network

© R. Rutenbar 2001, CMU 18-760, Fall 2001 30

Page 15

Network Ops: Resub

Y Resub -a

» Substitute each node in the
network into each other node in
the network

» In other words, for each pair of
nodes S, T, checks if S is a factor of
T, orif T is a factor of S

» Tries to use both the true and
complemented form of the output
of each node it tries to substitute

» Loops until network stops getting
‘“‘better”, ie, literal count stops
decreasing

» ‘“-a” means that algebraic division
is how it checks to see if one node
can substitute (divide) into another

» (We talk about algebraic division
next -- don’t worry...)

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

© R. Rutenbar 2001,

Resub Example

Resub example |

e

Resub example 2

=)
=)

e

© R. Rutenbar 2001,

H

A&
TR

5

Note: F was
-~ complemented

G

Page 16

CMU 18-760, Fall 2001 31

CMU 18-760, Fall 2001 32

Running resub in SIS

N SIS session

sis> read_eqn resub.eqn

sis> print
{F}=ab
{G}=ab+c
{H}=ab+e
sis> resub -a
sis> print
{F}=ab
{G} = {F} +c @
H}=(Fr+e

UNIX file: resub.eqn

F=ab;
G=ab+c;
H=ab+e;

© R. Rutenbar 2001, CMU 18-760, Fall 2001 33

Network Ops: Fx

X Fx

» Extracts common subexpressions
that are either

> A single cube (eg, b’cd)
> A double cube (eg, ab + b’cd)
» Result is a new nodes in the

network that represent these
common “factors” removed

» Note that after you get these
factors, you run “resub” to see
which ones are worth keeping

> ...ie, if it made the network
worse to factor them out,
resub will put the factors back
into the fanout nodes

© R. Rutenbar 2001,

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

CMU 18-760, Fall 2001 34

Page 17

fx example

m

Fx will conside several
potential factors:
ab, ab+c,
then decide which
ones are worth extracting

o
b

© R. Rutenbar 2001, CMU 18-760, Fall 2001 35

Running fx in SIS

N SIS session

sis> read_eqn fx.eqn UNIX file: fx.eqn

sis> print F=ab+c+x;
{F}=ab+c+x G=abx+cx+d;
{G}=abx+cx+d H=ab+d;
{H}=ab+d

sis> fx

sis> print
{F}=[31]+x
(G} =[31]x+d @
Hy=ab+d 7 @=[Bd

[3I:_|=ab+c

© R. Rutenbar 2001, CMU 18-760, Fall 2001 36

Page 18

U fx tries to find NEW common factors
» It adds nodes to the network to do this
» Tries to find good (usable) common subexpressions

N resub uses what is already in network
» It CANNOT go find or “extract” new factors
» It just looks at what nodes are already around in network

» It tries to use these to substitute one node into another to save literals

< So....
» Do fx first:

» Do resub next: try to use these factors to improve network

© R. Rutenbar 2001,

create a bunch of good-looking common factors

CMU 18-760, Fall 2001 37

Rugged Script

N Now it’s possible to go back
and really read the script

It should make sense...
» 4 major phases of simplification

» Goes from easy optimizations to
harder, more expensive ones

» Uses ESPRESSO to do each
individual node

» Uses algebraic division to find
good common subexpressions

» Tracks literal count to judge
quality of network

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx Second [round of

resub -a; sweep

eliminate -1; sweep
full_simplify -m nocomp

© R. Rutenbar 2001,

“aggressive” factoring

Optimize
each node
aggressively

CMU 18-760, Fall 2001 38

Page 19

Multilevel Synthesis: What’s Left?

X Factoring: how do we really do it?

» Operators we don’t have are those related to factoring out (extracting)
common subexpressions from multiple vertices

> Allow us to do the substitution, decomposition, extraction ops
> (Simplification op is just ESPRESSO on | vertex)
> We need this to be able to do the “fx’’ factoring

N New model of Boolean functions: Algebraic model

» Yet another way of thinking about Boolean functions that allows us easily
to do several division-like operations

» Term ‘“algebraic” comes from pretending that Boolean expressions
behave like polynomials of real numbers, not like Boolean algebra

» Big new Boolean operator: algebraic division

© R. Rutenbar 2001, CMU 18-760, Fall 2001 39

Algebraic Model

WIdea: keep just those rules (axioms) that work for polynomials
of reals AND Boolean algebra, dump rest

Real numbers

a*b = bea

a+b = b+a

a*(bec) = (a*b)c
a+(b+c) = (atb)+c
a*(b+c) = a*b + asc
as1=a a0=0
at0=a

X

Boolean algebra

a*b = bea

atb = b+a

a*(bec) = (a*b)*c
at(b+c) = (atb)+c
as(b+c) = asb+asc
as1=a a0=0

at0=a

ata’=1 aa’=0
NOT asa=a ata=a
J\RNe)/=pl a+71=1

a+(bec) = (a+b)+(a+c)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 40

Page 20

Algebraic Model

In English

» Only get to use algebra rules from real numbers
» A variable and its complement are treated as totally unrelated

N Idea

» Boolean functions represented / manipulated as SOP expressions
» Each product term in such an expression is just a set of variables
» The expression itself is just a set of these products (cubes)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 41

Algebraic Division

N Model for factoring

» Given function f we want to factor like this:

f=degq+r

divisor quotient remainder (if =0, then we say the
say quotient is a factor)
» (just like regular numbers, eg, 15=7°2+)

» Boolean example

© R. Rutenbar 2001, CMU 18-760, Fall 2001 42

Page 21

Algebraic Division

X Example

f=ac+ad+bc+hbd+e want f=deq + r

Divisors (d) Quotient (q) Remainder (r) Factor?
ac+ad+bc+bd+e

atb

ct+d

®Q 0T

© R. Rutenbar 2001, CMU 18-760, Fall 2001 43

Algebraic Division

N Turns out there is a very nice algorithm for this

N Inputs

» A Boolean expression A and a divisor (to divide by) D, represented as
sets of cubes (and each cube a set of literals)

X Output

» Quotient q = A/D = cubes in quotient, or 0 if none
» Remainder r = cubes in remainder, or 0 if D was a factor
» ie, figures out q,r so that A =Deq+r =D°*(A/D) +r

N Strategy

» Cubewise walk thru cubes in divisor D, trying to divide them into A
» ...being careful to track which cubes do divide into A

© R. Rutenbar 2001, CMU 18-760, Fall 2001 44

Page 22

Algebraic Division Algorithm

N Algorithm bugfix Bl

Cube xyzw contains
«| product term “yz”

Q

AlgebraicDivision(A, D) { /* divide D into A */

for (each cube d in divisor D) { o
let C = { cubes in A that contain this product term “d” };
if (Cisempty) {
return (quotient = 0, remainder = A);

}
let C = cross out literals of cube “d” in each cube of C;--..,
if (d is the first cube we have looked at in divisor D) ’ .
letQ=C; . H
else Q=QnNC; bugfix Y
} Example:
R=A-(Q*B); Suppose C = xyz + yzw +pqyz
return (quotient = Q, remainder = R) and d = “xy”. Then crossing
} out all the “xy” parts yields
z+y+pq
© R. Rutenbar 2001, CMU 18-760, Fall 2001 45

Algebraic Division: Example

A/D: A=axc+axd+axe+bc+bd+e D=ax+b

AT D cube: ax | D cube: b Easiest way manually is to make this
s C=... C=... table:
axc axc one row per cube in A_,
one column per cube in D,
axd | axd bottom row to evolve Quotient Q
axe axe and, when done, remember to get remainder
bc
bd
e
Q = Q =
1 Remainder R=A-Q*D
= (axc + axd + axe + bc + bd + e) - [(ax+b)*()]
© R. Rutenbar 2001, CMU 18-760, Fall 2001 46

Page 23

Algebraic Division: Warning

X Remember the basic model assumptions
» Cannot do any “boolean” simplification, only “algebraic”

N So what?
» OK, suppose you have this

A =ab’c +ab +ac+bc B=ab+c wantA/B

» You must transform it to something like this...

» Because you MUST treat the true and compl forms of var as different

© R. Rutenbar 2001, CMU 18-760, Fall 2001 47

One More Constraint: Redundant Cubes

N To do A/D, we need function A not to have redundant cubes

» Redundant meaning formally minimal with respect to single-cube
containment, ie, “completely covered by other cubes in SOP cover”

F=a+ ab + bc is redundant c aboo ol Il 10
D = a is the divisor; we want to do F/D 0

now: compute F/D, ie, F/a]
use our algebraic division algorithm...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 48

Page 24

Multilevel Synthesis Models: Where are We?

N Given Boolean A, D, you can compute A = Q*D + R easily
» This is great—but its still not enough

» Real problem: | give you n functions Fl, F2, ... Fn, and want to find a
set of good common divisors di

X How to find?

» Case |: divisors d that are just 1 cube (1 product term), eg, d = ab
» Case 2: “bigger” multiple-cube divisors, eg d =ab +c’d + e

© R. Rutenbar 2001, CMU 18-760, Fall 2001 49

New Idea: Kernels

X Where to look for multiple cube divisors? Kernels

» Kernel of a Boolean expression fis:

» Co-kernel of f is:

quotient q kernel if cube-free
divisor d | expression f d=1cube | expression f
remainder r remainder r
f=deq+r f=deq+r
© R. Rutenbar 2001, CMU 18-760, Fall 2001 50

Page 25

N Cube-free means...?

» Means you cannot factor out a single cube (product term) divisor that
leaves no remainder

» Technically -- has no one cube that is a factor of expression

» So, you divide expression f by a cube, look at result, if you can pull out a
cube -- any cube -- with 0 remainder, it’s not a kernel

Expression f f=d*q+r Cube-free?
a

a+b

ab + ac

abc + abd

ab + acd + bd

© R. Rutenbar 2001, CMU 18-760, Fall 2001 51

N Kernels of expression f denoted K(%)
» Look at example f=abc + abd + bcd

Divisor cube d f=deq+r Is it a Kernel of f?
(1)(abc+abd+bcd)+0 No, has cube = b as factor

Q0T O =

ab

ad

bc

bd

cd

abc

© R. Rutenbar 2001, CMU 18-760, Fall 2001 52

Page 26

X What don’t we know yet?
» Why we should care about kernels
» If we should care, how to find them

N Why you should care:
Theorem: Brayton & McMullen

Expressions f, g have a common multiple-cube divisor d

if and only if

© R. Rutenbar 2001, CMU 18-760, Fall 2001 53

Kernel Theorem

N OK, let’s try that in English...
» Start with expressions fand g
» Look at sets of kernels of each K(f), K(g)
» Since kil is a kernel of f, k2 is a kernel of g, we know that

» Remember: kl, k2 are cube-free, they have to be multi-term SOP
expressions lacking a common factorable cube

© R. Rutenbar 2001, CMU 18-760, Fall 2001 54

Page 27

» So if we substitute back into f, g

» ...but we can rewrite this, pullingout kl Nk2=(X +Y +..)

» ..but now it’s clear that kl nk2=(X +Y +...)
is a common, multiple-cube divisor! It’s a nice, big common factor!

© R. Rutenbar 2001, CMU 18-760, Fall 2001 55

N That was NOT a Proof!!

» ...it was just an example, but it illustrates what’s going on
N Why is Brayton/McMullen so important?
» It’s a necessary and sufficient condition
There i You can find kernels in f, and in g
ei:_e :S a csm;?qn such that intersection of kernels
muttiple-cube divisor gives expression with >=2 cubes;
for your functions f, g

...that intersection is your divisor

» It’s hugely practical: the only place to look for multiple-cube factors is
in intersections of the kernels of your functions. There’s no place else.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 56

Page 28

Kernels: Example

N Consider this f, g

f=ae +be + cde + ab g=ad+ae+bd+be+bc
K(f) Kernel Co-kernel K(g) Kernel Co-kernel
[atb+cd] e dore
bte a d+e aorb
ate b d+e+c b
aetbe+cde+ab \1 ad+ae+bd+betbc 1

N/

Intersecting these 2 kernels: (a+b+cd) * (a+b) 4 (a+b)

(a+b) is a divisor we can consider for both f, g

© R. Rutenbar 2001, CMU 18-760, Fall 2001 57

N So, they are quite useful, but how to ger them?
» Another recursive algorithm (are we surprised...?)
» There are 2 more useful properties of kernels we need to see first...

N Start with a function f and a kernel k1 in K()
f = cube1 * k1 + remainder1

UFirst: a new, interesting question: what about K(k1) 7?
» ki is a perfectly nice Boolean expression, so its got its own kernels
» Do these kernels have anything interesting to say about K(f)...?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 58

Page 29

N Look at K(kl)
» Suppose k2 is a kernel in K(ki), then we know

» Substitute this in for kl in original expression for f

» Neat trick: cubelecube is itself just another single cube, so rewrite to
emphasize this fact:

© R. Rutenbar 2001, CMU 18-760, Fall 2001 59

Kernel Hierarchy

N So , what does this say?
» k2 is itself a kernel of function f!
» There is a hierarchy of kernels, each inside the next, up the hierarchy

N Terminology

» A kernel k in K(f) is a level 0 kernel if it has no kernels inside it except
itself

> In English: only cube you can pull out is ‘I’ and get a cube-free
quotient as the result

» A kernel k in K(f) is a level i kernel if it contains only kernels
of level < i, and just one kernel at level i which is itself

> In English: a level-1 kernel only has level-0 kernels inside it.
A level-2 kernel only has level-1 kernels in it, etc...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 60

Page 30

Kernel Hierarchy

N 2nd useful result [Brayton et al]

Co-kernels of a Boolean expression in SOP form correspond to intersections
of 2 or more of its cubes in this SOP form

» NOTE: Intersections here means specifically that we regard a cube as a
set of literals, and look at common subsets of literals
> Note: this is not like “AND”’ for products.

» Example
ace+bce+de+g
ace nbce =ce =>ce is a potential co-kernel

ace Nnbce nde =e =>e is a potential co-kernel

© R. Rutenbar 2001, CMU 18-760, Fall 2001 61

Kernel Hierarchy

N How do we use these 2 results?
» Find the kernels recursively —

> Whenever we find one, call kernel() routine on it, so find (if any)
lower level kernels inside

» Use algebraic division to divide function by potential co-kernels, to
generate recursive calls...

> ...but be smart: co-kernels are intersections of the cubes

> ...if there’s at least 2 cubes, then look at the intersection C of the
literals in those cubes and use the result as our co-kernel cube

© R. Rutenbar 2001, CMU 18-760, Fall 2001 62

Page 31

Kernel Algorithm

W Algorithm is then...

FindKernels(expression F) {
K = null;
for (each variable x in F) {
if (there are at least 2 cubes in F that have variable x) {
let S = { cubes in F that have variable x in them };
let ¢ = cube that results from intersection of all cubes in S,
this will be the product of just those literals
that appear in each of these cubes in S;

K=K u FindKernels(F /c) ;
}
}

algebraic division, but
K=KUF; simpler since it always
return(K) just divides by exactly
I cube, a simple product term
Function F is always its
own kernel, with

trivial cokernel = |
©R. Rutenbar 2001, CMU 18-760, Fall 2001 63

Kerneling Example

N To start, divide f by each of the variables, and use to recurse
» We’re looking for co-kernels with ONE variable in them
» But—be smart, it cannot be a cokernel unless its in at least 2 cubes

f=ace+bce+de+g

M/\\g

e
no recurs no recurs cubes wi c=

no recurs cybes wi e= no recurs
only 1 only 1 only 1 only 1
cubewia cube wib cube wi d cube wi e
C=N= C=nN=
fiC = fIC =
recurse on: recurse on:
©R. Rutenbar 2001, CMU 18-760, Fall 2001 64

Page 32

Kernel Hierarchy, Example Revisited

X With this algorithm, overall recursion tree looks like this

f=ace+bcet+de+g
e N,

fIC =

© R. Rutenbar 2001, CMU 18-760, Fall 2001 65

Kernel Hierarchy

X With this algorithm...
» Can find all the kernels (and cokernels too)

N Problem
» Will revisit same kernel multiple times

N Solution
» Trick: remember which variables you already tried in the cokernels

» Problem: kernel you get for cokernel abc is same as for cba, but current
algorithm doesn’t know this and will find same kernel for both cubes

» A little extra book keeping solves this -- see De Michelli pp 367-369

© R. Rutenbar 2001, CMU 18-760, Fall 2001 66

Page 33

Using Kernels and Co-Kernels

X 'What good are these?
N Exactly the right component pieces for...

» Extraction of a single-cube divisor from multiple expressions
» Extraction of a multiple-cube divisor from multiple expressions

S
~ 2> (= cvat + 1D
~ @\

-

» When you want a single-cube divisor: go looking for co-kernels

» When you want a multiple-cube divisor: go looking for kernels

© R. Rutenbar 2001, CMU 18-760, Fall 2001 67

Multilevel Synthesis Models: Summary

N Boolean network model

» Like a gate network, but each node in network is an SOP form
» Supports many operations to add, reduce, simplify nodes in network

N Algebraic model & algebraic division
» Simplified Boolean functions to behave like polynomials of real numbers
» Lets you divide one Boolean function by another
» function f= (divisor d) (quotientq) + remainderr

N Kernels / Co-kernels of a function
» Kernel = cube-free quotient got by dividing by a single cube

» Intersections of kernels of 2 functions f, g are where all the interesting
multiple-cube common subexpressions are to be found

» Strong theorem here: Brayton-McMullen

N Still have to figure out what the right common factors are to
have, given all this machinery...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 68

Page 34

