## (Lec 7) Multi-Level Minimize I: Models \& Methods

- What you've seen so far...
- 2-level minimization a la ESPRESSO
$\triangleright$ Manipulates (reshapes) SOP covers of functions
$\triangleright$ Heuristic: REDUCE - EXPAND - IRREDUNDANT
- What's left?
- Multi-level minimization, where final form of logic network is not just 2-level SOP AND-OR form
$\nabla$ What do we need?
- New, more general model of logic networks
- New operators: forms of division for Boolean functions
- New heuristic minimization strategies to use this model + operators


## Copyright Notice

## © Rob A. Rutenbar, 2001

## All rights reserved.

You may not make copies of this material in any form without my express permission.

## Where Are We?

- Moving on to real logic synthesis--for multi-level stuff

|  | M | T | W | Th | F |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug |  | 28 | 29 | 30 | 31 | I |
| Sep | 3 | 14 | 5 | 6 | 7 | 2 |
|  | 10 | [1] | 12 | 113 | 14 | 3 |
|  | 17 | 118 | 19 | 20 | 21 | 4 |
|  | 24 | 25 | 26 | 27 | 28 | 5 |
| Oct |  | 2 | 3 | 4 | 5 | 6 |
|  | 8 | 9 | 10 | II | 12 | 7 |
|  | 15 | 16 | 17 | 18 | 19 | 8 |
|  | 22 | 23 | 24 | 25 | 26 | 9 |
|  | 29 | 130 | 31 | I | 2 | 10 |
| Nov | 5 | 6 | 7 | 8 | 9 | 11 |
|  | 12 | 113 | 14 | 115 | 16 | 12 |
| Thnxgive | 19 | 120 | 21 | 22 | 23 | 13 |
|  | 26 | 127 | 28 | 29 | 30 | 14 |
| Dec | 3 | 4 | 5 | 6 | 7 | 15 |
|  | 10 | 11 | 12 | 113 | 14 | 16 |

## Introduction

Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs \& apps

## Readings

D DeMicheli has a lot of relevant stuff

- Again, he worked on some of this at Berkeley and at IBM
$\checkmark$ Read this in Chapter 8
- 8.I Intro: take a look.
- 8.2 Models and Transforms--this is about the "Boolean network model"
- 8.3 The Algebraic Model -- how people do factoring for complex Boolean logic networks


## Why Multi-Level Forms

2-level too restrictive: specific area vs delay tradeoff - Area = gates + literals (wires), ie, things that take space on a chip

- Delay = max levels of logic gates required to compute function
- 2-level is minimum gate delay possible, but usually worst on area



## Why Multi-Level?

- Rarely see 2-level designs for really big things, mostly for pieces of bigger things
- Even smallish things routinely done as multi-level



## Real MultiLevel Example

- ...and this is a pretty small design, done by Synopsys DesignCompiler



## Boolean Logic Network Model

$\checkmark$ Need more sophisticated model of these networks
$\checkmark$ New model: Boolean Logic Network

- Idea: it's a netlist of connected components, like a logic diagram, but now individual components can be arbitrary Boolean func's

Ordinary gate netlist


Same circuit as a Boolean logic network, $x, y$ are now Boolean functions


## Boolean Logic Networks

- It's just a graph, with:
- Primary inputs (usually vars)
- Primary outputs (stuff network creates for other logic to consume)
- Intermediate nodes that are themselves represented as Boolean functions...all in SOP form
$\nabla$ Now what?
- Look at some operators that one can use to manipulate these networks
- Some are fairly simple structural operations on graphs
- Some will require entirely new operators (like division)
- Our derivation follows DeMicheli closely, sections 8.1 and 8.2


## Boolean Logic Networks

## - Consider example from De Micheli

- Let's look at some operations on this network...
$p=c e+d e$
$q=a+b$
$r=p+a^{\prime}$
$s=r+b$,
$t=a c+a d+b c+b d+e$
$u=q \prime c+q c^{\prime}+q c$
$v=a \prime d+b d+c \prime d+a e^{\prime}$
w = v
$x=s$
$y=t$

z = u

$$
\text { Network Quality measure }=\sum_{\text {nodes }}(\text { literals })=\square
$$

## Reminder: Boolean Network Model

## $\checkmark$ Remember what this picture means

- It's a graph
- Has primary inputs and outputs
- Internal nodes mean "here is an SOP-form Boolean function"
- Edges means "here are signals going into/out of these functions"
- \#literals = count up all lits in every SOP equation in every Boolean node

As gates it looks like this...


## Operations on Boolean Network

$\checkmark$ What's the overall goal here?

- Simplify the network - reduce total number of literals
- Optimize timing - reduce delay from input to output thru gates, wires


## \ 3 basic types of operations

- Add new network nodes: this is related to factoring—take "big" nodes and factor them into more, better, smaller nodes
- Remove network nodes: take nodes that are "too small" and substitute them back into the fanout nodes that they feed
- Simplify network nodes: no change in \# of nodes, just simplify insides
- A big set of possible operators in real implementations
- Look at just a couple of examples...


## Network Ops: Elimination

V Reducing \#nodes: Elimination

- Removes an internal vertex by replacing it (adding its SOP expression) into all the other vertices it feeds
- Note: eliminate vertex for $r$ requires substituting ( $p+a$ ) in $s$ node



## Network Ops: Extraction

$\checkmark$ Adding nodes: Extraction

- Create a new vertex that represents a common subexpression for $>=2$ vertices, and add it to network
- Substitute the output of the new vertex for common parts elsewhere
$\rightarrow$ Note that: $p=(c+d) e$ and $t=(c+d)(a+b)+e$, so extract $c+d$


```
\lits =
```


## Network Ops: Simplification

- Simplifying a node: 2-Level Simplification
- Run a 2-level minimizer (ESPRESSO!) at a vertex -- see if the SOP cover of the vertex gets simpler
$\triangleright$ Note -- if you don't eliminate any vars, it's a local transformation
$\triangleright$ If you actually eliminate a var, it's global -- changes the network
Note: note $\mathbf{u}=\mathbf{q}{ }^{\prime} \mathbf{c}+\mathrm{qc}+\mathrm{qc}=\mathrm{q}+\mathrm{c}$



## Network Ops: Iterative Improvement

## - Sort of like ESPRESSO loop

- Iteratively apply these (and other) ops to network to try to improve it
- Usually count literals (all wires into each node of the network) or count (gates + literals)
- Our example can simplify to this by applying these (and other) ops:

| Literals |
| :--- |
| Before: |
| After: |



## Network Ops: Scripts

- What do people really use to do multi-level optimization?
- Programs like MIS II, SIS, HSIS, VIS (from Berkeley)
- Commercial tools from Synopsys, Synplify, Cadence, Avanti
- What do multilevel synthesis tools look like?
- Use Boolean network model
- Provide collections of network operators
- Users invoke scripts that run a sequence of these ops on their design
- What's a script look like...?


## Scripts

\ Here is a "famous" script originally from MIS II tool

- The so-called "rugged" script
- A sequence of network ops...

```
sweep; eliminate -1
simplify -m nocomp
eliminate - 1
sweep; eliminate 5
simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full_simplify -m nocomp
```


## Running Real Logic Synthesis: SIS

- SIS is a Berkeley multi-level synthesis tool
- /afs/ece/class/ee760/sis is the binary for IBM and SUN

UC Berkeley, SIS Development Version (compiled 2-Nov-95 at 6:54 PM) sis>

Command prompt
Type "help" to get a list of all commands

## Rugged Ops: Sweep

$\checkmark$ Sweep ...

- Eliminates all single-input vertices
- Eliminates vertices with a constant function (ie, ==0, ==1 always)
- Sort of a basic "clean up" op

```
sweep; eliminate -1
simplify -m nocomp
eliminate - 1
sweep; eliminate 5
simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full_simplify -m nocomp
```


## Sweep Examples

## Sweep examples



## Running sweep in SIS

- SIS session



## Aside: SIS Syntax

V For a typical eqn format input file

-     + means OR
* means AND
-" " (a space) also means AND
- (one apostrophe) means NOT (on a literal)
- () used for grouping
-! means EXOR
- == means EXNOR
- ! ( ) means NEGATE the contents of the parens
- F (a capital letter) usually means a function, output of a network node
- x ( a small letter) usually means a primary input to the overall network

SIS "print" output

- \{G\} means G is a primary output of the network (nobody else eats it)
- [3I] means SIS creates a new Boolean network node during simplification, and it gives you a number in brackets as an ID.


## Network Ops: Eliminate

- Eliminate <threshold>...
- Eliminates all nodes in the network whose "value" is less than or equal to threshold.
- Value of node
$\triangleright=$ Number of times the node is used in the factored form for each of its fanout nodes
$\triangleright=$ Number of lits saved by NOT eliminating the node
- Eliminates node by collapsing it into its fanout nodes
- "-I" means eliminate nodes only used once elsewhere in network

```
sweep; eliminate -1
simplify -m nocomp
eliminate -1
sweep; eliminate 5 simplify -m nocomp resub -a
fx
resub -a; sweep
eliminate -1; sweep full_simplify -m nocomp
```


## "Value" of Elimination

## $\checkmark$ Scenario

- We have a vertex that has $L$ literals in it; It feeds $\mathbf{N}$ other vertices
- What happens if we eliminate it? What is "value" of this?
- Answer is: change in total number of literals in design


Total literals before $=$
Total literals after = Change $=$ value $=$

## Eliminate Examples

## Eliminate -I



Eliminate 5


## Running eliminate in SIS

$\checkmark$ SIS session

| sis> read_eqn elim.eqn | UNIX file: elim.eqn |
| :---: | :---: |
| sis> print | $F=\mathbf{a b c}$; |
| $F=\mathrm{abc}$ | $\mathbf{G I}=\mathbf{F}+\mathbf{d}$; |
| \{GI\} $=$ F + d | G2 = F + ef; |
| $\{\mathrm{G} 2\}=\mathrm{F}+\mathrm{ef}$ | G3 $=\mathbf{F}+\mathrm{gh}$; $\mathbf{G 4}=\mathrm{F}+\mathrm{de}$; |
| $\{\mathrm{G} 3$ = $\mathrm{F}+\mathrm{gh}$ | C4 $F+$ de |
| $\{\mathrm{G} 4\}=\mathrm{F}+\mathrm{de}$ |  |

sis> eliminate I
sis> print

$$
\left.\begin{array}{l}
\mathbf{F}=\mathbf{a} \mathbf{b} \mathbf{c} \\
\{\mathbf{G} \mathbf{I}\}=\mathbf{F}+\mathbf{d} \\
\{\mathbf{G} 2\}=\mathbf{F}+\mathbf{e} \mathbf{f} \\
\{\mathbf{G} 3\}=\mathbf{F}+\mathbf{g} \mathbf{h} \\
\{\mathbf{G} 4\}=\mathbf{F}+\mathbf{d e}
\end{array}\right\} \begin{aligned}
& \text { No change. Why? } \\
& \text { Cost to eliminate } \mathrm{F} \text { node is }+5 \text { literals. } \\
& \text { But, we set threshold to }+1 \text { literal, so-eliminate } \\
& \text { won't do anything here. Cost is too high. }
\end{aligned}
$$

## Running eliminate in SIS

## \ SIS session continued

## sis> eliminate 3

sis> print

sis> eliminate 5
sis> print

$$
\{G I\}=a b c+d
$$

$$
\{G 2\}=a b c+e f
$$

$$
\{G 3\}=a b c+g h
$$

Now it does it.

$$
\{G 4\}=a b c+d e
$$

sis>

## Network Ops: Simplify

$\checkmark$ simplify

- Run ESPRESSO on each node
- Minimize SOP 2-level form of each
- "-m nocomp" says don't try to compute the full offset for each node-- makes it run faster
- full_simplify
- Same as simplify, but uses a larger set of don't cares...
- ...works harder to try to get a better (smaller SOP) answer
sweep; eliminate -1 simplify -m nocomp eliminate -1
sweep; eliminate 5 simplify -m nocomp resub -a
fx
resub -a; sweep
eliminate -1; sweep
full_simplify -m nocomp


## Simplify Examples

## Simplify



Goal is just to "clean up" insides of each node in the Boolean network

## Network Ops: Resub

V Resub-a

- Substitute each node in the network into each other node in the network
- In other words, for each pair of nodes $\mathrm{S}, \mathrm{T}$, checks if S is a factor of T , or if T is a factor of S
- Tries to use both the true and complemented form of the output of each node it tries to substitute
- Loops until network stops getting "better", ie, literal count stops decreasing
- "-a" means that algebraic division is how it checks to see if one node can substitute (divide) into another
- (We talk about algebraic division next -- don't worry...)
sweep; eliminate -1 simplify -m nocomp eliminate -1
sweep; eliminate 5 simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full_simplify -m nocomp


## Resub Example

Resub example I


## Resub example 2



## Running resub in SIS

$\checkmark$ SIS session
UNIX file: resub.eqn
sis> read_eqn resub.eqn
sis> print
$\{F\}=a b$
$\{G\}=a b+c$
$\{H\}=a b+e$
sis> resub -a
sis> print
$\{F\}=a b$
$\{G\}=\{F\}+c$
$\{H\}=\{F\}+e$


## Network Ops: Fx

## $\nabla \mathrm{Fx}$

Extracts common subexpressions that are either
$\triangleright$ A single cube (eg, b'cd)
$\triangleright$ A double cube (eg, ab + b'cd)

- Result is a new nodes in the network that represent these common "factors" removed
- Note that after you get these factors, you run "resub" to see which ones are worth keeping $\triangleright \ldots$ ie, if it made the network worse to factor them out, resub will put the factors back into the fanout nodes



## fx Example

## fx example



## Running fx in SIS

$\checkmark$ SIS session


## resub != fx

## Ifx tries to find NEW common factors

- It adds nodes to the network to do this
- Tries to find good (usable) common subexpressions
$\nabla$ resub uses what is already in network
- It CANNOT go find or "extract" new factors
- It just looks at what nodes are already around in network
- It tries to use these to substitute one node into another to save literals
- So....
- Do fx first: create a bunch of good-looking common factors
- Do resub next: try to use these factors to improve network


## Rugged Script

- Now it's possible to go back and really read the script


## V It should make sense...

- 4 major phases of simplification
- Goes from easy optimizations to harder, more expensive ones
- Uses ESPRESSO to do each individual node
- Uses algebraic division to find good common subexpressions
- Tracks literal count to judge quality of network



## Multilevel Synthesis: What's Left?

V Factoring: how do we really do it?

- Operators we don't have are those related to factoring out (extracting) common subexpressions from multiple vertices
$\triangleright$ Allow us to do the substitution, decomposition, extraction ops
$\triangleright$ (Simplification op is just ESPRESSO on I vertex)
$\triangleright$ We need this to be able to do the " fx " factoring

V New model of Boolean functions: Algebraic model

- Yet another way of thinking about Boolean functions that allows us easily to do several division-like operations
- Term "algebraic" comes from pretending that Boolean expressions behave like polynomials of real numbers, not like Boolean algebra
- Big new Boolean operator: algebraic division


## Algebraic Model

V Idea: keep just those rules (axioms) that work for polynomials of reals AND Boolean algebra, dump rest

Real numbers
$a \bullet b=b \cdot a$
$a+b=b+a$
$a \cdot(b \cdot c)=(a \cdot b) \cdot c$
$a+(b+c)=(a+b)+c$
$a \cdot(b+c)=a \cdot b+a \cdot c$
$a \cdot 1=a \quad a \cdot 0=0$
$a+0=a$
x
 $a+a^{\prime}=1$ $a \cdot a^{\prime}=0$
$a \cdot a=a$ $a+a=a$
$a+1=1$
$a+(b \cdot c)=(a+b) \cdot(a+c)$

## Algebraic Model

$\checkmark$ In English

- Only get to use algebra rules from real numbers
- A variable and its complement are treated as totally unrelated
$\square$


## $\checkmark$ Idea

- Boolean functions represented / manipulated as SOP expressions
- Each product term in such an expression is just a set of variables
- The expression itself is just a set of these products (cubes)


## Algebraic Division

- Model for factoring
- Given function $f$ we want to factor like this:

- (just like regular numbers, eg, $15=7 \cdot 2$ + )
- Boolean example


## Algebraic Division

$\checkmark$ Example

$$
f=a c+a d+b c+b d+e \quad \text { want } f=d \cdot q+r
$$

| Divisors (d) <br> $\mathrm{ac}+\mathrm{ad}+\mathrm{bc}+\mathrm{bd}+\mathrm{e}$ | Quotient (q) | Remainder (r) | Factor? |
| :--- | :--- | :--- | :--- |
| $\mathrm{a}+\mathrm{b}$ |  |  |  |
| $\mathrm{c}+\mathrm{d}$ |  |  |  |
| a |  |  |  |
| b |  |  |  |
| c |  |  |  |
| d |  |  |  |
| e |  |  |  |

## Algebraic Division

- Turns out there is a very nice algorithm for this
$\checkmark$ Inputs
- A Boolean expression A and a divisor (to divide by) D, represented as sets of cubes (and each cube a set of literals)
$\checkmark$ Output
- Quotient q = A/D = cubes in quotient, or 0 if none
- Remainder $r=$ cubes in remainder, or 0 if $D$ was a factor
- ie, figures out $q, r$ so that $A=D \cdot q+r=D \bullet(A / D)+r$


## - Strategy

- Cubewise walk thru cubes in divisor $D$, trying to divide them into $A$
- ...being careful to track which cubes do divide into A


## Algebraic Division Algorithm

Algorithm<br>bugfix<br>AlgebraicDivision(A, D) \{ /* divide D into A */

Example:
Cube xyzw contains product term "yz"
for ( each cube d in divisor $D$ ) \{
let $C=\{$ cubes in A that contain this product term "d" \};
if ( $C$ is empty ) \{
return ( quotient $=0$, remainder $=A$ );
\}
let $C=$ cross out literals of cube "d" in each cube of C;
if ( $d$ is the first cube we have looked at in divisor $D$ )
$\begin{aligned} & \text { let } Q=C ; \\ & \text { else } Q=Q \cap C ;\end{aligned} \quad$ bugfix
\}
R = A - ( $\mathbf{Q}$ * B );
return ( quotient $=Q$, remainder $=R$ )
\}

Example:
Suppose $C=x y z+y z w+p q y z$ and $d=$ " $x y$ ". Then crossing out all the "xy" parts yields $z+y+p q$

## Algebraic Division: Example

A/D: $A=a x c+a x d+a x e+b c+b d+e \quad D=a x+b$

| A cube | $\begin{gathered} \text { D cube: } a x \\ \text { C }=\ldots \end{gathered}$ | $\begin{gathered} \text { D cube: } \mathrm{b} \\ \mathrm{C}=\ldots \end{gathered}$ | Easiest way manually is to make this table: <br> one row per cube in $A$, one column per cube in $D$, bottom row to evolve Quotient Q and, when done, remember to get remainder |  |
| :---: | :---: | :---: | :---: | :---: |
| axc | axc |  |  |  |
| axd | axd |  |  |  |
| axe | axe |  |  |  |
| bc |  |  |  |  |
| bd |  |  |  |  |
| e |  |  |  |  |
|  | Q = | Q = |  |  |
| $R=(a x c+a x d+a x e+b c+b d+e)-\left[(a x+b)^{*}(\quad)\right]$ |  |  |  |  |

## Algebraic Division: Warning

V Remember the basic model assumptions

- Cannot do any "boolean" simplification, only "algebraic"
$\checkmark$ So what?
- OK, suppose you have this
$\mathrm{A}=\mathrm{ab} \mathbf{c}^{\prime}+\mathrm{ab}+\mathrm{ac}+\mathrm{bc}$
$B=a b+c$ want $A / B$
- You must transform it to something like this...

- Because you MUST treat the true and compl forms of var as different


## One More Constraint: Redundant Cubes

- To do A/D, we need function A not to have redundant cubes
- Redundant meaning formally minimal with respect to single-cube containment, ie, "completely covered by other cubes in SOP cover"
$F=a+a b+b c$ is redundant
$D=a$ is the divisor; we want to do F/D
now: compute $F / D$, ie, $F / a$ use our algebraic division algorithm...



## Multilevel Synthesis Models: Where are We?

V Given Boolean $A, D$, you can compute $A=Q * D+R$ easily

- This is great—but its still not enough
$\rightarrow$ Real problem: I give you n functions FI, F2, ... Fn, and want to find a set of good common divisors di

$\checkmark$ How to find?
- Case I: divisors d that are just 1 cube (1 product term), eg, $\mathrm{d}=\mathrm{ab}$
- Case 2: "bigger" multiple-cube divisors, eg d=ab+c'd+e


## New Idea: Kernels

- Where to look for multiple cube divisors? Kernels
- Kernel of a Boolean expression $f$ is:

remainder r
$f=d \cdot q+r$
$f=d \bullet q+r$
© R. Rutenbar 2001, CMU 18-760, Fall 200150


## Kernels

## - Cube-free means...?

- Means you cannot factor out a single cube (product term) divisor that leaves no remainder
- Technically -- has no one cube that is a factor of expression
- So, you divide expression $f$ by a cube, look at result, if you can pull out a cube -- any cube -- with 0 remainder, it's not a kernel

| Expression $f$ | $f=d^{*} q+r$ |
| :--- | :--- |
| $a$ | Cube-free? |
| $a+b$ |  |
| $a b+a c$ |  |
| $a b c+a b d$ |  |
| $a b+a c d+b d$ |  |

## Kernels

$\checkmark$ Kernels of expression $f$ denoted $K(f)$

- Look at example $\mathrm{f}=\mathrm{abc}+\mathrm{abd}+\mathrm{bcd}$

| Divisor cube d 1 | $\begin{aligned} & f=d \cdot q+r \\ & \text { (1)(abc+abd+bcd)+0} \end{aligned}$ | Is it a Kernel of f? $\qquad$ <br> No, has cube $=b$ as factor |
| :---: | :---: | :---: |
| a |  |  |
| b |  |  |
| c |  |  |
| d |  |  |
| ab |  |  |
| ac |  |  |
| ad |  |  |
| bc |  |  |
| bd |  |  |
| cd |  |  |
| abc |  |  |
| $\cdots$ |  |  |

Page 26

## Kernels

- What don't we know yet?
- Why we should care about kernels
- If we should care, how to find them
- Why you should care:

Theorem: Brayton \& McMullen
Expressions $\mathrm{f}, \mathrm{g}$ have a common multiple-cube divisor d if and only if


## Kernel Theorem

- OK, let's try that in English...
- Start with expressions fand g
- Look at sets of kernels of each $\mathrm{K}(\mathrm{f}), \mathrm{K}(\mathrm{g})$
- Since kl is a kernel of f , k 2 is a kernel of g , we know that

- Remember: kI, k2 are cube-free, they have to be multi-term SOP expressions lacking a common factorable cube



## Kernels

- So if we substitute back into $f, g$

$\triangleright$...but we can rewrite this, pulling out $k \mid \cap k 2=(X+Y+\ldots)$

...but now it's clear that $k l \cap k 2=(X+Y+\ldots)$
is a common, multiple-cube divisor! It's a nice, big common factor!


## Kernels

## V That was NOT a Proof!!

- ...it was just an example, but it illustrates what's going on

Why is Brayton/McMullen so important?

- It's a necessary and sufficient condition

There is a common multiple-cube divisor for your functions f,g

You can find kernels in $f$, and in $g$ such that intersection of kernels gives expression with $>=2$ cubes;
...that intersection is your divisor

- It's hugely practical: the only place to look for multiple-cube factors is in intersections of the kernels of your functions. There's no place else.


## Kernels: Example

- Consider this $\mathrm{f}, \mathrm{g}$

$$
f=a e+b e+c d e+a b \quad g=a d+a e+b d+b e+b c
$$



Intersecting these 2 kernels: $(a+b+c d) *(a+b)=(a+b)$
$(a+b)$ is a divisor we can consider for both $f, g$

## Kernels

- So, they are quite useful, but how to get them?
- Another recursive algorithm (are we surprised...?)
- There are $\mathbf{2}$ more useful properties of kernels we need to see first...

Start with a function f and a kernel k 1 in $K(f)$

$$
\mathrm{f}=\text { cube1 • k1 + remainder1 }
$$

\First: a new, interesting question: what about $K(k 1)$ ??

- kl is a perfectly nice Boolean expression, so its got its own kernels
- Do these kernels have anything interesting to say about $K(f)$...?


## Kernels

$\checkmark$ Look at $K(\mathrm{k} 1)$

- Suppose k2 is a kernel in $K(k l)$, then we know
$\square$
- Substitute this in for kl in original expression for f


Neat trick: cubel ${ }^{\circ}$ cube2 is itself just another single cube, so rewrite to emphasize this fact:


## Kernel Hierarchy

$\nabla$ So , what does this say?

- $k 2$ is itself a kernel of function $f$ !
- There is a hierarchy of kernels, each inside the next, up the hierarchy


## Terminology

- A kernel $k$ in $K(f)$ is a level 0 kernel if it has no kernels inside it except itself
$\triangleright$ In English: only cube you can pull out is ' $I$ ' and get a cube-free quotient as the result

A kernel $k$ in $K(f)$ is a level $i$ kernel if it contains only kernels of level < $i$, and just one kernel at level $i$ which is itself

In English: a level-I kernel only has level-0 kernels inside it. A level-2 kernel only has level-I kernels in it, etc...

## Kernel Hierarchy

- 2nd useful result [Brayton et al]

Co-kernels of a Boolean expression in SOP form correspond to intersections of 2 or more of its cubes in this SOP form

- NOTE: Intersections here means specifically that we regard a cube as a set of literals, and look at common subsets of literals
$\triangleright$ Note: this is not like "AND" for products.
- Example
ace + bce + de + g ace $\cap$ bce $=c e \quad=>$ ce is a potential co-kernel ace $\cap$ bce $\cap d e=e=>e$ is a potential co-kernel


## Kernel Hierarchy

- How do we use these 2 results?
- Find the kernels recursively -
$\triangleright$ Whenever we find one, call kernel( ) routine on it, so find (if any) lower level kernels inside
- Use algebraic division to divide function by potential co-kernels, to generate recursive calls...
$\triangleright$...but be smart: co-kernels are intersections of the cubes
$\triangleright$...if there's at least 2 cubes, then look at the intersection $C$ of the literals in those cubes and use the result as our co-kernel cube


## Kernel Algorithm

Algorithm is then...
FindKernels( expression F) \{
$K=$ null;
for ( each variable $x$ in $F$ ) \{
if ( there are at least 2 cubes in $F$ that have variable $x$ ) \{
let $S=\{$ cubes in $F$ that have variable $x$ in them \};
let $\mathrm{c}=$ cube that results from intersection of all cubes in S , this will be the product of just those literals that appear in each of these cubes in S;
$K=K \cup$ FindKernels( $F / c$ );

## \}

\}
$K=K \cup F$;
return( K )
\}
algebraic division, but simpler since it always just divides by exactly I cube, a simple product term

Function $F$ is always its own kernel, with trivial cokernel = I

## Kerneling Example

- To start, divide $f$ by each of the variables, and use to recurse
- We're looking for co-kernels with ONE variable in them
- But-be smart, it cannot be a cokernel unless its in at least 2 cubes



## Kernel Hierarchy, Example Revisited

With this algorithm, overall recursion tree looks like this


## Kernel Hierarchy

- With this algorithm...
- Can find all the kernels (and cokernels too)
$\checkmark$ Problem
- Will revisit same kernel multiple times


## $\checkmark$ Solution

- Trick: remember which variables you already tried in the cokernels
- Problem: kernel you get for cokernel abc is same as for cba, but current algorithm doesn't know this and will find same kernel for both cubes
- A little extra book keeping solves this -- see De Michelli pp 367-369


## Using Kernels and Co-Kernels

$\checkmark$ What good are these?
V Exactly the right component pieces for...

- Extraction of a single-cube divisor from multiple expressions
- Extraction of a multiple-cube divisor from multiple expressions

- When you want a single-cube divisor: go looking for co-kernels
- When you want a multiple-cube divisor: go looking for kernels


## Multilevel Synthesis Models: Summary

## - Boolean network model

- Like a gate network, but each node in network is an SOP form
- Supports many operations to add, reduce, simplify nodes in network


## - Algebraic model \& algebraic division

- Simplified Boolean functions to behave like polynomials of real numbers
- Lets you divide one Boolean function by another
- function $f=$ (divisor d)• (quotient q) + remainder $r$

V Kernels / Co-kernels of a function

- Kernel = cube-free quotient got by dividing by a single cube
- Intersections of kernels of 2 functions $f, g$ are where all the interesting multiple-cube common subexpressions are to be found
- Strong theorem here: Brayton-McMullen

Still have to figure out what the right common factors are to have, given all this machinery...

