
Page 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 1

(Lec 4) Binary Decision Diagrams: Manipulation(Lec 4) Binary Decision Diagrams: Manipulation
What you know

Basic BDD data structure
DAG representation
How variable ordering + reduction = canonical

A few immediate applications
eg, trivial tautology checking

What you don’t know
Algorithms to build one efficiently
Most useful implementation tricks for efficiency

(Thanks to Randy Bryant & Karl Brace for nice BDD pics+slides)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar, 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001, CMU 18-760, Fall 2001 3

Where Are We?Where Are We?
More BDDs -- now how to actually implement them

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 4

HandoutsHandouts
Physical

Lecture 04 -- BDD Manipulation

Electronic
HW2 is out on the web site.
(Also, note all TA/Prof office hours are on web site, in “About Class”)

Assignments
Proj3 out late today or tomorrow: Building a simple BDD package in
JAVA, then using it for some example verification tasks

Page 3

© R. Rutenbar 2001, CMU 18-760, Fall 2001 5

BDDs: CreationBDDs: Creation
First goal

Input: a gate-level logic network
Output: a BDD that represents Boolean function of the network

Question: how?
Cannot afford to do it the way we developed the BDD idea...
...cannot build the full decision diagram from the truth table and then
do the reduction to canonical form

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

© R. Rutenbar 2001, CMU 18-760, Fall 2001 6

BDDs: CreationBDDs: Creation
So, how do we do it?

Build up BDD incrementally, by walking the gate network
Each input is a BDD
Each gate becomes an operator that produces a new BDD

A

B

C

T1

T2

Out

A B C
T1 T2

Out

0 1

a

0 1

c

0 1

b

0 1

b

a

0 1

c

b

c

b

0 1

b

a

Page 4

© R. Rutenbar 2001, CMU 18-760, Fall 2001 7

BDDs: CreationBDDs: Creation
Strategy

Represent data as set of OBDDs, all with identical variable orderings
Express solution method as a sequence of symbolic operations
Implement each operation by OBDD manipulation

What exactly is a symbolic operation?
Think of it like a C language subroutine that works on BDDs...

bdd *OPERATOR(bdd *bddInput1, bdd *bddInput2)

... ie, it’s a routine that takes 2 pointers to BDD structures, builds a new
BDD structure, and returns you a pointer to it

Algorithmic properties
Arguments are OBDDs with identical variable orderings.
Result is OBDD with same ordering.
Called the “Closure Property”: OBDDs go in, OBDDs come out

© R. Rutenbar 2001, CMU 18-760, Fall 2001 8

BDDs: CreationBDDs: Creation
How do we do it?

Option 1 (The obvious approach)
Build BDD operators for all the things you can do directly on logic gate
networks, or Boolean functions themselves

Simple operators: NOT(a), AND(a,b) OR(a,b), EXOR(a,b), etc
Complex operators: COFACTOR(F,x), CONSENSUS(F,x), etc

A

B

C

T1

T2

Out

To build the BDD for Out... might want something like this:

A = new_var("a");
B = new_var("b");
C = new_var("c");
T1 = AND(A, B);
T2 = AND(B, C);
Out = OR(T1, T2);

Page 5

© R. Rutenbar 2001, CMU 18-760, Fall 2001 9

BDDs: CreationBDDs: Creation
What’s wrong with this?

Nothing, actually. Perfectly workable...
...but not the most elegant way of doing it
And not the way people actually do it these days

Option 2: (Subtle approach)
Build a few, critical, core operators on BDDs
Build up ALL the other operators you like using ONLY this small
set of building-block operators

Advantage
Actually less programming work, since you only have to build a
few ‘complicated’ routines
Makes it much easier to add new operators later

© R. Rutenbar 2001, CMU 18-760, Fall 2001 10

BDDs: RESTRICT OperatorBDDs: RESTRICT Operator
So, what are the core operators we need?

Surprisingly, there are only 2: RESTRICT, ITE

RESTRICT(function F, variable v, constant k)
This is just the Shannon cofactor of F wrt variable v
Example: RESTRICT(F, v, 0) == Fv’

RESTRICT(F, v, 1) == Fv

Remember: F is represented as a BDD,
result of RESTRICT is another BDD

ie, we are really implementing something like this:

bdd *RESTRICT(bdd *F, variable v, int k)

Page 6

© R. Rutenbar 2001, CMU 18-760, Fall 2001 11

BDDs: ITE If_Then_Else OperatorBDDs: ITE If_Then_Else Operator
ITE(function F, function G, function H)

Called the IF-THEN-ELSE operator
ITE(F,G, H) is itself another Boolean function
Couple of different ways to describe just what ITE is...

In pseudo-C...
ITE(F,G,H)(x1,...,xn) {

if (F(x1, ..., xn)==1)
then return (G(x1,..., xn))
else return (H(x1,..., xn))

}

In Boolean algebra...
Let X = x1,x2,...xn, just for convenience of notation

ITE(F,G,H)(X) = F(X)•G(X) + F(X)•H(X)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 12

BDDs: ITEBDDs: ITE
As hardware...

This one is also pretty easy to remember
ITE is like an IF-THEN-ELSE in software, or a MUX in hardware

Critical things to remember are:
ITE(F,G,H) IS A NEW FUNCTION
F,G,H are inputs to ITE operator, represented as BDDs
ITE(F,G,H) creates (is) a new BDD

ITE(F,G,H)(X)MUX
1

0

F

G

H

select
X

Page 7

© R. Rutenbar 2001, CMU 18-760, Fall 2001 13

BDDs: ITEBDDs: ITE
Conventions

Usually see the input functions to ITE written like this:

...just for convenience in remembering that the first is the IF function,
the second is the THEN function, last is ELSE function

Back to BDD core operators
Sort of easy to see why you need RESTRICT -

Lots of useful things you can build out of cofactors

What good is ITE? What can you do with it?
Actually, almost everything...

ITE(I, T, E)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 14

BDDs: Uses of ITEBDDs: Uses of ITE
Can make any basic 2-input gate out of ITE

Not

And

Or

MUX
1

0
F

F

0

1

MUX
1

0

F
G

F

G

0

MUX
1

0

F
G

F

G

1

Page 8

© R. Rutenbar 2001, CMU 18-760, Fall 2001 15

BDDs: Uses of ITEBDDs: Uses of ITE
Let’s be precise abut how we intend to use ITE

And

Have BDD
data structures
for functions
F(X), G(X) We want to

create the BDD
for the function
(F•G)(X)

We do this by
calling the ITE routine
on the BDD data structures
for function F,
for function G,
and for constant BDD== ‘0’

ITE returns as value a pointer
to a new BDD, which == (F•G)

ITE(F,G,0)MUX
1

0

F
G

F

G

0

© R. Rutenbar 2001, CMU 18-760, Fall 2001 16

BDDs: CreationBDDs: Creation
If you can implement RESTRICT, ITE...

You can build up basically anything useful you need to manipulate
Boolean functions, or build BDDs of actual gate networks

New question
How do we actually implement RESTRICT and ITE as algorithms?

Answers
Shannon cofactoring to the rescue, again!
Recursive divide and conquer, again!
Need a couple of special data structures to make it efficienct
Start by looking at ITE

Page 9

© R. Rutenbar 2001, CMU 18-760, Fall 2001 17

BDDs: Implementing ITEBDDs: Implementing ITE
Assumptions

There is a global variable ordering: x1 < x2 < x3 < ... < xn
If I give you a few variables, you can tell me which is “smallest”
Example: Input: x2, x7 smaller(x2, x7) == x2

We will use multi-rooted DAGs (MRDAGs) for the BDDs
Amazingly enough, it’s simpler to implement
Newly created BDDs always try to share nodes in existing BDDs

Example: what is MRDAG BDD for functions F(a,b)=a+b, G(a,b)=b ?

a

b

10

© R. Rutenbar 2001, CMU 18-760, Fall 2001 18

BDDs: Implementing ITEBDDs: Implementing ITE
Key implementation idea: Use Shannon expansion

Suppose X=x1, x2, ... x, ... xn
Suppose we have 3 functions I(X), T(X), E(X), then...

...ie, ITE can itself be decomposed recursively!
And, if you want to think BDDs...

ITE(I, T, E) = x • ITE(Ix , Tx , Ex) + x’ • ITE(Ix’ , Tx’ , Ex’)

ITE(I , T , E) = x

ITE(Ix’ , Tx’ , Ex’) ITE(Ix , Tx , Ex)
BDD
for I

BDD
for T BDD

for E

Page 10

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

BDDs: Implementing ITEBDDs: Implementing ITE
So, what do we need to do recursive ITE?

Termination conditions: when can we recognize answer and quit?
Splitting criterion: which variable (x?) do you pick to split on?
Cofactoring: how hard is it to get Ix, Tx, Ex, etc. from their BDDs?
Efficiency concerns: how fast is this, how big is the recursion?
Reduction: how do we guarantee the BDD we produce is reduced?

Solutions
Turns these thing are actually all interdependent
Let’s start walking thru these issues and see what we get...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 20

BDDs: Implementing ITEBDDs: Implementing ITE
General algorithm

ITE(bdd I, bdd T, bdd E) {
if (terminal case) {

return computed result ;
}
else {

let x be splitting variable;
PosFactor = ITE(Ix , Tx , Ex) ;
NegFactor = ITE(Ix’ , Tx’ , Ex’) ;
R = new node for var x ;
R.loson = NegFactor ;
R.hison = Posfactor ;
Do reductions;
return(R);

}
}

Page 11

© R. Rutenbar 2001, CMU 18-760, Fall 2001 21

BDDs: ITE ImplementationBDDs: ITE Implementation
ITE(I, T, E) terminal cases

If I = 1 => Return T
if I = 0 => Return E
If T = 1 && E = 0 => Return I
If T = E => Return E

Examples

ITE(, ,) =

ITE(, ,) =

BDD
for I

BDD
for T

BDD
for E

1 0 0
ITE(, ,) =

BDD
for T

0

1
0

select

I

T

E ITE(I,T,E)

BDD
for E

BDD
for E

BDD
for T

© R. Rutenbar 2001, CMU 18-760, Fall 2001 22

BDDs: ITE ImplementationBDDs: ITE Implementation
Some subtlety about termination

A concern raised earlier was: how do we keep answer reduced?
At least for the termination conditions, easy in a multi-rooted DAG
When you terminate, you just return a pointer to something that
already exists in the MRDAG
Since the MRDAG is a BDD, it’s already reduced

ie, No extra work

Note: so, when ITE is called and terminates,
it really looks like this...

ITE(, ,) =
Each of the inputs – I, T, E
are really represented by a ptr to
some root node in this big MRDAG.
Result ITE(I,T,E) ultimately
ends up another node in here.
For termination conditions, the
result is always an existing node.MRDAG for all our BDDs

Page 12

© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

BDDs: ITE ImplementationBDDs: ITE Implementation
Splitting variable selection

There’s actually only one right choice
Split on smallest var among roots of I, T, E

Why?
Because it makes the cofactoring trivial to implement!
Remember, we now have to compute Ix , Tx , Ex , Ix’ , Tx’ , Ex’

ITE(I , T , E) => if x < y < z, pick x to split on

BDD
for I

BDD
for T BDD

for E

y x z

© R. Rutenbar 2001, CMU 18-760, Fall 2001 24

BDDs: ITE ImplementationBDDs: ITE Implementation

RESTRICT(F,v,k)
Remember, this is the operator
that does the cofactor on BDDs
In general, it’s a bit complicated
Trouble is when you cofactor wrt a
var “down deep” inside the BDD
Example: Restrict variable b to 1

b

c

0 1

c

b

a

0 1

c

Restrict (bdd F, var x, const k):
Bypass any nodes
for variable x /* set to const */
– Choose Hi child for k = 1
– Choose Lo child for k = 0

Reduce result

⇒

Find
nodes

⇒ ⇒
Reduce

c

0 1

c

a

b

c

0 1

c

b

a Bypass

Page 13

© R. Rutenbar 2001, CMU 18-760, Fall 2001 25

BDDs: ITE ImplementationBDDs: ITE Implementation
..but there’s some useful special cases here

If we always pick splitting var as: smallest(roots of I, T, E)...
...then we are always doing one of these 2 cases

Case 1: Restrict on root node variable

Restrict(, x , 1) Restrict(, x , 0)

Case 2: Restrict on variable less than root node variable

– E.g., x < y

Restrict(, x , 1)

hison loson

original function

x

L H
H

x

L H
L

y

L H

© R. Rutenbar 2001, CMU 18-760, Fall 2001 26

BDDs: ITE ImplementationBDDs: ITE Implementation
OK -- that last one was subtle...

Let’s look at a concrete example to see “the idea” here.

0

b3

a3

b2

a2

1

b1

a1
var order is: a1 < b1 < a2 < b2 < a3 < b3

Function F

Restrict(F , b1, 1) == ?

Page 14

© R. Rutenbar 2001, CMU 18-760, Fall 2001 27

BDDs: ITE ImplementationBDDs: ITE Implementation
Why that works

Always pick a variable at or above the root of I, T, E
Never then have to cofactor “down deep” in BDD
Result is always a pointer to some node that already exists in the multi-
rooted DAG of our BDDs
So, again, the reduction step takes care of itself here

ie, the MRDAG is reduced at all times, we just return a pointer to a
subDAG inside it, which is also reduced

RESTRICT(, var x, constant) =

MRDAG for all our BDDs

In a multirooted DAG,
these special cases
of RESTRICT will always
return a pointer to some
node that is already in DAG

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

BDDs: ITE ExampleBDDs: ITE Example
Let’s try a little ITE example

Capital letters = functions, small letters = variables
Var order is a < b < c < d
We want to compute ITE (I(a,b,c,d) , T(a,b,c,d) , E(a,b,c,d))
Assume it’s a MRDAG, we use function names to ID nodes...

notation is
“E” for this node,

ie, we will label
the Boolean

function
for each node

a

b

10

I = a+b
B = b

a

c

T = a•c

C = c
b

d

E = b+d

D = d

Page 15

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

BDD: ITE ExampleBDD: ITE Example
ITE(I, T, E) = ?
smallest var among roots is a

a

ITE(Ia , Ta , Ea)ITE(Ia’ , Ta’ , Ea’)

lo hi

a

ITE(1, C, E)ITE(B, 0, E)

lo hi

ITE(I,T,E)

ITE(I,T,E)

ITE(, ,)
ITE(B, 0, E)

ITE(, ,)

a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 30

Can we terminate these new ITEs right away?
…ie, will we recurse more, or do we know the answers now?
Let’s remember the special cases for ITE termination

a

ITE(1, C, E)ITE(B, 0, E)

lo hi

ITE(I,T,E)

ITE(, ,) ITE(B, 0, E)ITE(, ,)

1
0

select

I

T
E ITE(I,T,E) ITE(I,T,E)

1
0

select

I

T
E

Page 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 31

BDD: ITE ExampleBDD: ITE Example

a

CITE(B, 0, E)

lo hi

ITE(I,T,E)

ITE(Bb , 0b , Eb)

= ITE(1, 0, 1)
= 0

ITE(Bb’ , 0b’ , Eb’)

= ITE(0, 0, D)
= D

a

C

lo hi

ITE(I,T,E)

b
lo hi

a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 32

BDD: ITE ExampleBDD: ITE Example

And we are done!
Recursion tree naturally traces out the resulting BDD for ITE(I,T,E)
We set up termination conditions so that leaves are always nodes that
already exist in the original multi-rooted DAG for
So, we can just “plug” our result back into our MRDAG...

0D

a

C

lo hi

ITE(I,T,E) = ______________

b
lo hi

a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

Page 17

© R. Rutenbar 2001, CMU 18-760, Fall 2001 33

BDD: ITE ExampleBDD: ITE Example

0D

a

C

lo hi

b
lo hi

ITE(I,T,E)

a

b

ITE(I,T,E)Actual resulting
MRDAG

that we get

a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 34

BDD: ITE ImplementationBDD: ITE Implementation
Reduction, revisited

In our little example, the resulting function ITE was new, not already
existing in the MRDAG, and all the leaf nodes were already there.
What happens if the resulting function is NOT new, if it already exists in
the MRDAG?

Example
Suppose that, for whatever reason, ITE returns the “B = b” function

1

b

0

lo hi

ITE(I,T,E)a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

Page 18

© R. Rutenbar 2001, CMU 18-760, Fall 2001 35

BDDs: ITE ImplementationBDDs: ITE Implementation
Following prior examples, we build MRDAG as...

1

b

0

lo hi

ITE(I,T,E)

b

ITE(I,T,E)

TROUBLE!!
It’s not reduced
anymore!!

a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 36

a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

BDDs: ITE ImplementationBDDs: ITE Implementation
Easy to create a new BDD that’s not reduced

In our ‘B=b’ example, we made a redundant ‘b’ var node
How to fix?

Clever trick: The “Unique” Table
New notation: make key for each node as (var, lo, hi)
Make a hash table (called the Unique table) that maps (var, lo, hi) for
each node into actual pointer address of the node in the MRDAG

Hash Index Address
(a,17,11) 14

Unique Table

10 11

12
13 14

15

16 17

Ptr address

Page 19

© R. Rutenbar 2001, CMU 18-760, Fall 2001 37

BDDs: ITE ImplementationBDDs: ITE Implementation
Trick

Never, ever just create a node, like a ‘B=b’ node, without checking to see
if the node you want to create already exists in the Unique table
This is the “big idea” for how we avoid redundancy

Need a new function, called FindOrCreateNode
FindOrCreateNode checks to see if the node you want to make already
exists in the MRDAG.
If so, it just returns a pointer to that node, instead of making a new node
FindOrCreateNode also can check to make sure you don’t do something
stupid to make an unreduced DAG
Helpful to see a picture of what FindOrCreateNode does...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 38

BDDs: ITE ReductionBDDs: ITE Reduction
Case 1: Trying to make a constant node

If you invoke FindOrCreate(constant, null, null) and the MRDAG
already has that constant, you return a pointer to it

Note: this handles the first reduction rule we gave...

Ex: FindOrCreateNode(1, null, null) =

1 0

BDDs

aa a

Page 20

© R. Rutenbar 2001, CMU 18-760, Fall 2001 39

BDDs: ITE ReductionBDDs: ITE Reduction
Case 2: Trying to duplicate an existing var node

If you invoke FindOrCreate(var, loson, hison) and the MRDAG already
has this node, you just return a pointer to it

Note: this handles the second reduction rule we gave...

⇒
y

x

z

x

y

x

z

Ex: FindOrCreateNode(a, 10, 16) = 10
a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

10 11

12
13 14

15
16 17

© R. Rutenbar 2001, CMU 18-760, Fall 2001 40

BDDs: ITE ReductionBDDs: ITE Reduction
Case 3: Trying to make an unnecessary test node

If you invoke FindOrCreate(var, loson, hison) and loson = = hison, then
you just return loson, and don’t even try to look in DAG

Note: this handles the last reduction rule we gave...

y

x

y

⇒

Ex: FindOrCreateNode(b, 15, 15) = 10
a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

10 11

12
13 14

15

16 17

Page 21

© R. Rutenbar 2001, CMU 18-760, Fall 2001 41

BDDs: ITE ReductionBDDs: ITE Reduction
Case 4: None of the above

Well, you can’t find it in the existing MRDAG, and it’s not stupid to
create it, so go ahead and create the node, and then remember to
insert it in the unique table

Hash index Address
•
•
•

(b, 15, 16) 20

Unique Table

Ex: FindOrCreateNode(b, 15, 16) = ?
a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

10 11

12
13 14

15

16 17

a

b

10

I = a+b

B = b
a

c

T = a•c

C = c
b

d

E = b+d

D = d

10 11

12
13 14

15

16 17

© R. Rutenbar 2001, CMU 18-760, Fall 2001 42

ITE: FindOrCreateNodeITE: FindOrCreateNode
Algorithm looks like this

FindOrCreateNode(var v, bdd loson, bdd hison) {
if (v is actually a constant) {

if(this constant NOT already in Unique table)
install this constant in UNIQUE table;

return (pointer to constant);
}
else if (loson == hison)

return (loson) ;
else if ((v, loson, hison) already in Unique table)

return (pointer to (v, loson, hison) from Unique table);
else {

create new node = (v, loson, hison);
install this node in Unique table;
return (pointer to (v, loson, hison));

}
}

Page 22

© R. Rutenbar 2001, CMU 18-760, Fall 2001 43

BDDs: ReductionBDDs: Reduction
What’s really going on here?

Instead of building a nonreduced BDD, then going back to reduce it...
...instead, we check each node as we try to create it during recursive
divide&conquer...
...if it would create a redundant node, we don’t allow it to happen.
Instead, we return an existing node of the BDD whenever we can.

This is actually how ALL reductions get done on BDDs
All algorithms that manipulate or create BDDs call FindOrCreateNode,
to ensure things always stay reduced
Never, ever create an unreduced DAG

© R. Rutenbar 2001, CMU 18-760, Fall 2001 44

ITE: ImplementationITE: Implementation
One more essential trick for efficiency

Turns out that on bigger problems, it’s very easy for the recursion to try
to recompute the same intermediate result – ITE(•, •, •) called on
intermediate functions – many times
In fact, can be exponential number of calls to ITE in the recursion, but
not all of them are unique computations
Turns out there is a really easy fix...
But let’s convince ourselves that this is a real problem, first...

Page 23

© R. Rutenbar 2001, CMU 18-760, Fall 2001 45

ITE: Recursive CallsITE: Recursive Calls
Compute ITE(I, T, E) for BDDs below (alphabet var order)

Argument I Argument T Argument E

ITE Recursive Callsb

0

d

1

c

ap

q

r

s

0 1

11

0 1

d

c

a

10

x

y

z

ITE(p, 1, x)

ITE(q, 1, z)

ITE(r, 1, y)ITE(r, 1, z)

ITE(s, 1, z) ITE(s, 1, 1)ITE(1, 1, z)

ITE(0, 1, 0) ITE(1, 1, 1)

a=0
a=1

b=0 b=1

c =0c =1c =1
c =0

d =0 d =1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 46

ITE(p, 1, x)

ITE(q, 1, z)

ITE(r, 1, y)ITE(r, 1, z)

ITE(s, 1, z) ITE(s, 1, 1)ITE(1, 1, z)

ITE(0, 1, 0) ITE(1, 1, 1)

a=0
a=1

b=0 b=1

c =0c =1c =1
c =0

d =0 d =1

BDDs: ITE Recursive CallsBDDs: ITE Recursive Calls
Recursive call tree tells us a lot...

These have 2 arrows
going INTO them, so
these ITE results will
get recomputed twice
during recursion

Page 24

© R. Rutenbar 2001, CMU 18-760, Fall 2001 47

Aside: Remember What ITE Is Doing...Aside: Remember What ITE Is Doing...
Each call to ITE starts with 3 BDDs, returns a BDD

ITE(s , 1 , z) = ptr to some bdd

s z

MRDAG for all our BDDs

1

ITE(p, 1, x)

ITE(q, 1, z)

ITE(r, 1, y)ITE(r, 1, z)

ITE(s, 1, z) ITE(s, 1, 1)ITE(1, 1, z)

ITE(0, 1, 0) ITE(1, 1, 1)

a=0
a=1

b=0 b=1

c =0c =1c =1
c =0

d =0 d =1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 48

BDDs: Reduction RevisitedBDDs: Reduction Revisited
Also, can see that reduction is important

Recursive calls to ITE naturally trace out an unreduced BDD
Reduction “on the fly” via FindOrCreateNode prevents this

0 1

d

c

b

11

c

a

Recursion
“Natural” BDD

traced out
during ITE recursion

Reduced BDD

0

d

c

b

1

aITE(p, 1, x)

ITE(q, 1, z)

ITE(r, 1, y)ITE(r, 1, z)

ITE(s, 1, z) ITE(s, 1, 1)ITE(1, 1, z)

ITE(0, 1, 0) ITE(1, 1, 1)

a=0
a=1

b=0 b=1

c =0c =1c =1
c =0

d =0 d =1

Page 25

© R. Rutenbar 2001, CMU 18-760, Fall 2001 49

ITE(p, 1, x)

ITE(q, 1, z)

ITE(r, 1, y)ITE(r, 1, z)

ITE(s, 1, z) ITE(s, 1, 1)ITE(1, 1, z)

ITE(0, 1, 0) ITE(1, 1, 1)

a=0
a=1

b=0 b=1

c =0c =1c =1
c =0

d =0 d =1

BDDs: ITE Operation TableBDDs: ITE Operation Table
How to prevent recomputation during ITE recursion?

Every time you return from ITE, you store your computed answer in a
table, called the Operation Table. Key is (I,T,E), value is address of
computed node in BDD returned
Every time you enter ITE, you look in the table first to see if the answer
has already been computed earlier in recursion
Nice, simple solution, trades some memory (table) for time

Hash Value Address
(p,1,r) bddNodeI
(q,1,d) bddNodeJ
(s,1,z) bddNodeK
•
•
•
•

Operation TableRecursion

© R. Rutenbar 2001, CMU 18-760, Fall 2001 50

BDDs: ITE ComplexityBDDs: ITE Complexity
Efficiency

Without Operation Table
Exponential Complexity
Effectively expand out decision trees

With Operation Table
Worst case = product of graph sizes for I, T, and E
At worst, will fill table with all possible keys

Interaction with multi-root DAG assumption
If all BDDs use shared nodes...

Maintain global Operation Table, across ALL BDDs
More possibilities for quick termination

Page 26

© R. Rutenbar 2001, CMU 18-760, Fall 2001 51

BDDs: ITEBDDs: ITE
Final ITE algorithm

ITE(bdd I, bdd T, bdd E) {
if (terminal case applies to I, T, E) {

return(immediate computed result) ;
}
else if (Operation Table has entry for (I,T,E)) {

return(result bdd node from operation table);
}
else {

let x be smallest var from among roots of I, T, E ;
PosFactor = ITE(Ix , Tx , Ex);
Negfactor = ITE(Ix’ , Tx’ , Ex’);
R = FindOrCreateNode(x, NegFactor, PosFactor);
InsertIntoOperationTable(hash value (I, T, E), address R) ;
return(R) ;

}
}

© R. Rutenbar 2001, CMU 18-760, Fall 2001 52

BDDs: ManipulationBDDs: Manipulation
There is a similar algorithm for general RESTRICT

Another recursive descent, uses FindOrCreateNode again
Trick is to replace all the nodes that have the variable you are
cofactoring out, and get the loson, hison pointers right
We won’t look at this in detail

If you can implement ITE, and RESTRICT...
You can basically implement everything interesting
Several useful properties too

Closure: if you start with ROBDDs with a particular var order,
results of ITE and RESTRICT (properly implemented) are again
ROBDDs with same var order
Complexity: polynomial in size of input BDDs

Page 27

© R. Rutenbar 2001, CMU 18-760, Fall 2001 53

BDDs: ManipulationBDDs: Manipulation
Summary

Implement 2 core operators on BDD data structures
RESTRICT(bdd F, var x, constant k) = Shannon cofactor
ITE(bdd I, bdd T, bdd E) = IF-THEN-ELSE operator
Each of these takes BDDs as inputs, returns a new BDD

From ITE & RESTRICT,you can implement lots of stuff
Cofactoring, quantification, derivatives
All the basic gate types: NOT, AND, OR, EXOR, etc
Other more exotic stuff (see homework)

Given an efficient BDD software package, can do lots of nice practical
engineering applications

Satisfiability: trace BDD from root to ‘1’ node to find inputs that
make the function == 1
Equivalence: if 2 functions are same over ALL inputs, their BDDs
end up itentical, ie, 2 pointers to same node in the MRDAG

