(Lec 3) Binary Decision Diagrams: Representation

What you know

- Lots of useful, advanced techniques from Boolean algebra
- Lots of cofactor-related manipulations
- A little bit of computational strategy
- Cubelists, positional cube notation
- Unate recursive paradigm

V What you don't know

- The "right" data structure for dealing with Boolean functions: BDDs
- Properties of BDDs
- Graph representation of a Boolean function
- Canonical representation
- Efficient algorithms for creating, manipulating BDDs
- Again based on recursive divide\&conquer strategy
(Thanks to Randy Bryant for nice BDD pics+slides)

Copyright Notice

© Rob A. Rutenbar, 2001

All rights reserved.

You may not make copies of this material in any form without my express permission.

Handouts

- Physical
- Lecture 03 -- BDDs: Representation
- Paper: Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams, ACM Computing Surveys, Sept 1992.

V Electronic

- Nothing today
\checkmark Reminder
- HWI is due Thu in class

Where Are We?

- Still doing Boolean background, now focussed on data structs

M	T	W	Th	F	
Aug 27	128	29	30	\|31	I
Sep 3	14	5	6	7	2
10	[1]	112	13	114	3
17	118	119	20	[2]	4
24	125	26	27	128	5
Oct 1	2	3	4	5	6
8	19	10	II	12	7
15	116	117	18	119	8
22	23	24	25	26	9
29	130	31	[1	2	10
Nov 5	6	7	8	9	11
12	113	114	15	116	12
Thnxgive 19	120	21	22	23	13
26	27	28	29	30	14
Dec 3	14	5	6	7	15
10	[II	12	113	14	16

Introduction
Advanced Boolean algebra

JAVA Review

Formal verification

2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs \& apps

Readings

\checkmark In De Micheli book

- pp 75-85 does BDDs, but not in as much depth as the notes

V Randy Bryant paper

- Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams, ACM Computing Surveys, Sept 1992.
- Lots more detail (some of it you don't need just yet) but very complete, if a bit terse.

BDD History

- A little history...
- Original idea for Binary Decision Diagrams due to Lee (1959) and Akers (1978)
- Critical refinement-Ordered BDDs-due to Bryant (1986)
- Refinement imposes some restrictions on structure
- Restrictions needed to make result canonical representation

- A little terminology

- A BDD is a directed acyclic graph
- Graph: vertices connected by edges
- Directed: edges have direction (draw them with an arrow)
- Acyclic: no cycles possible by following arrows in graph
$>$ Often see this shortened to "DAG"

Graphs

- DAGs -- a reminder of some technicalities...

A graph vertices + edges

A directed graph ...but not acyclic

A directed acyclic graph ...note that a "loop" is not a directed cycle, you are only allowed to follow edges along direction that the arrow points

Binary Decision Diagrams

- Big Idea \#1: Binary Decision Diagram
- Turn a truth table for the Boolean function into a Decision Diagram

Vertices =
Edges =

Leaf nodes =

- In simplest case, resulting graph is just a tree

- Aside

- Convention is that we don't actually draw arrows on the edges in the DAG representing a decision diagram
- Everybody knows which way they point, implicitly
- Point from parent to child in the decision tree
- Look at a simple example...

Binary Decision Diagrams

Truth Table

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Decision Tree

- Vertex represents a decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value I
- Function value determined by leaf value.

Binary Decision Diagrams

Some terminology

Ordering

V Note: Different variable orders are possible

Binary Decision Diagrams

- Observations

- Each path from root to leaf traverses variables in a some order
- Each such path constitutes a row of the truth table, ie, a decision about what output is when vars take particular values
- But we have not yet specified anything about the order of decisions
- This decision diagram is not canonical for this function

V Reminder: canonical forms

- Representation that does not depend on the logic gate implementation of a Boolean function
- Same function (ie, truth table) of same vars always produces this exact same representation
- Example: a truth table is canonical
a minterm list, for our function $f=\Sigma \mathbf{m}(3,5,7)$, is canonical

Binary Decision Diagrams

V What's wrong with this representation?

- It's not canonical,
- Way too big to be useful
- ...in fact it's every bit as big as a truth table: 1 leaf per row
- Big idea \#2: Ordering
- Restrict global ordering of variables

Means:

- Note
- It's OK to omit a variable if you don't need to check it to decide which leaf node to reach for final value of function

Total Ordering

Assign arbitrary total ordering to variables

- $x_{1}<x_{2}<x_{3}$
- Variables must appear in this specific order along all paths

- Properties
- No conflicting variable assignments along path (see each var at most once walking down the path).
Simplifies manipulation

Binary Decision Diagrams

- OK, now what's wrong with it?
- Variable ordering simplifies things...
- ...but representation still too big
- ...and still not necessarily canonical

Binary Decision Diagrams

- Big Idea \#3: Reduction

- Identify redundancies in the DAG that can remove unnecessary nodes and edges
- Removal of X2 node and its children, replacement with X3 node is an example of this sort of reduction

Vhy are we doing this?

- To combat size problem: want DAGs as small as possible
- To achieve canonical form: for same function, given total variable order, want there to be exactly one graph that represents this function

Reduction Rules

- Reduction Rule 1: Merge equivalent leaves

- ' a ' is either a constant I or constant 0 here
- Just keep one copy of the leaf node
- Redirect all edges that went into the redundant leaves into this one kept node

Reduction Rules

- Apply Rule 1 to our example...

Reduction Rules

Reduction Rule 2: Merge isomorphic nodes

Isomorphic: Means 2 nodes with same var and identical children

- You cannot tell these nodes apart from how they contribute to decisions as you decend thru DAG
- Note: means exact same physical child nodes, not just children with same labels
- Remove redundant node (extra ' x ' node here)
- Redirect all edges that went into the redundant node into the one copy that you kept (edges into right ' x ' node now into left as well)

Reduction Rules

Apply Rule 2 to our example

Reduction Rules

- Reduction Rule \#3: Eliminate Redundant Tests

- Test: means a variable node here...
- It's redundant since both of its children go to same node... - ...so we don't care what value x node takes in this diagram
- Remove redundant node
- Redirect all edges into the redundant node (x) into the one child node (y) of the removed node

Reduction Rules

Apply Rule \#3 to our example

Binary Decision Diagrams

\checkmark How to apply the rules?

- For now, just iteratively, keep trying to find places the rules "match" and do the reduction
- When you can't find any more matches, the graph is reduced
\checkmark Is this how programs really do it?
- Nope, there's some magic one can do with a clever hash table, but more about that later, when we start doing algorithms to manipulate BDDs
- Roughly speaking, in real programs you build the BDDs correctly on the fly--you never build a bad, noncanonical one then try to fix it.

BDDs: Big Results

Recap: what did we do?

- Start with any old BDD
- ...ordered the variables => Ordered BDD (OBDD)
\downarrow...reduced the DAG => Reduced Ordered BDD (ROBDD)
- Big result

- Same function always generates exactly same DAG...
- ...for a given variable ordering

ie, they are identically the same graph
- Nice property to have: simplest form of DAG is canonical

BDDs: Representing Simple Things

Vote: can represent any function as a ROBDD

- Here is the ROBDD for the function $f(x 1, x 2, \ldots . . x n)=0$

- Here is the ROBDD for the function $f(x 1, x 2, \ldots x n)=1$
\square
- Here is the ROBDD for the function $f(x I, \ldots, x, \ldots, x n)=x$

Binary Decision Diagrams

Assume variable order is $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4$

Typical Function

- No vertex labeled x_{3}
- independent of x_{3}
- Many subgraphs shared

Odd Parity

Linear representation

Sharing in BDDs

Technical aside

- Every node in a BDD (in addition to the root) represents some Boolean function in a canonical way

- BDDs are incredibly good at extracting and representing this kind of sharing of subfunctions in subgraphs

BDD Applications

Aside: some nice, immediate applications

- Tautology checking
- Was complex with the cubelist representation, required divide \&conquer algorithm, lots of manipulation
- With BDDs, it's trivial. Just see if the BDD for function == 1
- Satisfiability == can you find assignment of $0 \mathrm{~s} \& \mathrm{Is}$ to vars to make the function $==1$?
- No idea how to do it with cubelists
- With BDDs, any path to 1 node from root is a solution

Satisfiability: $\quad X_{1} X_{2} X_{3}=$

BDD Variable Ordering

V Question: Does variable ordering matter? YES!

Variable Ordering: Consequences

\checkmark Interesting problem

- Some problems that are known to be exponentially hard to solve work out to be very easy on BDDs
- Trouble is, they are only easy when the size of the BDD that represents the problem is "reasonable"
- Some input problems make nice (small) BDDs, others make pathological (large) BDDs
- No universal solution (or else we'd always be able to solve exponentially hard problems easily)
- How to handle?
- Variable ordering heuristics: make nice BDDs for reasonable probs
- Basic characterization of which problems never make nice BDDs

Variable Ordering

V Analogy to "bit-serial" computing useful here...

\checkmark Operation

- Suppose this machine reads your function inputs 1 bit at a time...
- ...ie, in a certain variable order.
- Stores information about previous inputs to correctly deduce function value from remaining inputs.

V Relation to OBDD Size

- If this 'machine' requires K bits of memory at step $i . .$.
- ...then the OBDD has $\sim \mathbf{2}^{K}$ branches crossing level i.

Variable Ordering: Example

$$
a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Variable Ordering: Intuition

- Idea: Local Computability

- Inputs that are closely related should be kept near each other in the variable order
- Groups of inputs that can determine the function value by themselves should be close together

$$
a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Variable Ordering: Intuition

∇ Idea: Power to control the output

- The inputs that "greatly affect" the output should be early in the variable order
- "Greatly affect" means almost always changes the output when this input changes
- Example: multiplexer

Variable Ordering

- What use is any of this? Suggests ordering heuristic... - Suppose I have a logic network like this...

Now, redraw to represent circuit as linear arrangement of its gates

- Constraint: all the output-to-input wires go left-to-right in this order - Called a topological ordering

Primary inputs represented by "source" blocks

Variable Ordering

- Parameters
- Number of primary inputs $=\mathrm{n}$
- "Bandwidth" = w = number of wires cut at widest point
\ Useful result: Size upper bound [Berman, IBM]
- Can represent with OBDD with <= n 2^{w} nodes
- Order variables in reverse of source block ordering
- Means list vars right to left in the above picture...

Variable Ordering

- Reasoning here goes like this...
- All info about vars > i encoded in w bits...
- ...so at most $2^{\text {w }}$ distinct decisions, which bounds number of branch destinations from levels < ito levels <= i

Variable Ordering

- Linear circuit example: 4 bit adder sum, MSB
- How to order vars for a simple 4-bit carry ripple adder, Sum MSB?

Answer: Use nice property of our adder circuit - It has Constant bandwidth => Linear OBDD size

Aside: Variable Ordering

- Generalization

- Many carry chain circuits have constant bandwidth
- Examples
- Comparators
- Priority encoders
- ALUs

Variable Ordering Heuristics

\checkmark Heuristic ordering methods

- Take advantage of this "linear ordering" idea
- Input: gate-level logic network we want to build a BDD for
- Output: global variable ordering to use
- Method: topological analysis, aka, "walking" the network graph...

Ordering

$$
\begin{aligned}
& b<a<d<c<e ? \\
& a<b<c<d<e ? \\
& e<d<c<b<a ?
\end{aligned}
$$

Example: Dynamic Weight Assignment Heuristic

- Concrete example: Minato's heuristic

- Pick a primary output; put a weight "1" there
- For each gate with weights on its output but not its input, "push" the weight thru to the inputs, dividing by the number of inputs. Each input gets equal weight.
- If there is fanout (one wire goes to >= 2 inputs) then ADD the weights to get the new weight for this wire.
- If there is more than 1 output, start with the one that has the deepest logic depth from the inputs
- Continue till all primary inputs are labeled

Dynamic Weight Assignment

- Minato's heuristic
- Pick the primary input with the biggest weight. Put it first in var order.
- Erase the subcircuit (wires, input pins, entire gates if they have only one "active" pin left) that are reachable only from this primary input we selected.
- Go back and reassign the weights again in the new, smaller circuit.

\square

Dynamic Weight Assignment

V Just continue

Dynamic Weight Assignment

\checkmark Minato's method

- Iteratively picks the next variable in the order using the simple weight propagation idea
- Tries to order all vars starting from the "deepest" output
\rightarrow Deletes the ordered var, erases wires/gates, repeats till all ordered
\checkmark How well does it work?
- Fairly well. Very simple to do. Lots better than random order.
- OK complexity == O(\#gates•\#primary inputs)

V Notes

- There are other, better, more complex heuristics
- Also, the ordering does NOT have to be static, it can change dynamically as the BDD is used

Variable Ordering Heuristics

\ Alternative: Suppose your network is a tree

- Start at the output
- Do a postorder traversal of tree
- Write down variables in order visited by the tree walk

V Remember postorder walk?

- Visits the nodes, ie, gates, in a deterministic order
- Ignore primary inputs (for now)
postorder (TreeNode) \{ if (TreeNode.TopChild != null) postorder(TreeNode.TopChild) if (TreeNode.BotChild != null) postorder(TreeNode.BotChild) write out TreeNode name \}

Nodes finished as:

Variable Ordering Heuristics

\checkmark In our case

- Tree might not be binary -- not a big deal
- Just use some consistent order for exploring the children nodes
- Visits variables in reverse order
- Why is this a good heuristic?
- It makes a linear ordering of ckt
- Bandwidth is $\mathrm{O}(\log N)$ for N blocks
- OBDD size is $O\left(N^{2}\right)$

Variable Ordering Heuristics

- What if network is not a tree?
- More general, more common case
- Some terminology: Reconvergent fanout
- When one input or intermediate output has multiple paths to the final network output, fanout is called reconvergent
- If you don't have a tree, you have this

Variable Ordering Heuristics

\checkmark For general logic networks

- Still try to do a depth-first walk of the graph, output to inputs
- Try to walk the graph like it was a tree, giving priority to nets that have multiple fanouts

B $<$ A $<$ C $<$ D $<$ E $<$ F $<$ G $<\boldsymbol{H}<$ I

Ordering: Results

Function Class	Best	Worst
Addition	linear	exponential
Symmetric	linear	quadratic
Multiplication	exponential	exponential

General Experience

- Many tasks have reasonable OBDD representations
- Algorithms remain practical for up to millions of OBDD nodes.
- Heuristic ordering methods are generally OK, though it may take effort to find a heuristic that works well for your problem
- So-called dynamic variable ordering -- reordering your BDD vars as your BDD gets used, to improve the size -- is essential today

Binary Decision Diagrams

- Variants and optimizations
- Refinements to OBDD representation
- Do not change fundamental properties
\checkmark Primary Objective
- Reduce memory requirement
- Critical resource
-Constant factors matter
- Secondary Objective
- Improve Algorithmic Efficiency
- Make commonly performed operations faster

V Common Optimizations

- Share nodes among multiple functions
- Negated arcs

Binary Decision Diagrams: Sharing

- Sharing, revisited
- We mentioned BDDs good at representing shared subfunctions
- Consider this example from a 4 bit adder: sum msb and carry out

Sharing: Multi-rooted DAG

\checkmark Don't need to represent it twice

- A BDD can have multiple 'entry points', or roots
- Called a multi-rooted DAG
\checkmark Recall
- Every node in a BDD represents some Boolean function
- This multi-rooting idea just explicitly exploits this to better share stuff

Sharing: Multi-rooted DAG

Why stop at 2 roots?

- For many collections of functions, there is considerable sharing
- Idea is to minimize size wrt several separate BDDs by max sharing

Example: Adders

- Separately
- 51 nodes for 4-bit adder
- $12,48 \mathrm{I}$ for $\mathbf{6 4}$-bit adder
- Quadratic growth
- Shared
- 31 nodes for 4-bit adder
- 57 I nodes for 64-bit adder
- Linear growth

BDD Sharing: Issues

\checkmark Storage model

- Single, multi-rooted DAG
- Function represented by pointer to node in DAG
- Be careful to apply reduction ops globally to keep all canonical
- Every time you create a new function, gotta go look in your big multi-rooted DAG to see if it already exists, inside, somewhere
\checkmark Storage management
- User cannot know when storage for node can be freed
- Must implement automatic garbage collection...
- ...or not try to free any storage
- Significantly more complex programming task
- Algorithmic efficiency
- Functions equivalent if and only if pointers equal
- if (pl == p 2) ...
- Can test in constant time

Optimization: Negation Arcs

Concept

- Dot on arc represents complement operator
- Inverts function value of BDD reachable "below the dot"
- Can appear on internal or external arc

Canonical Form

\Must have conventions for use of negative arcs

- Express as series of transformation rules
- These are really nothing more than DeMorgan laws

Rule \#I
No Double Negations
$\phi \quad \Rightarrow 1$

Rule \#2
No Negated Hi Pointers

Aside: Why Does This Work...?

V Just like Shannon expansion, applied again

- ..with prudent use of the basic DeMorgan laws.

No Negated Hi Pointers

Aside: Why Does This Work...?

Vust like Shannon expansion, applied again

Transformation Rules (Cont.)

Rule \#3

No Negated Constants

Rule \#4

Transformation Example

- Example of applying the rules
- Tends to get "nand-like" DAGs

Effect of Negation Arcs

Storage savings

- At most 2 X reduction in number of nodes

V Aside: can people really do this "negation" thing in their heads by looking at a normal BDD?

- Nope
- Takes lots of practice even to be able read these things
- Just useful because of the $\mathbf{2 X}$ space efficiency

Algorithmic improvement

- Can complement function in constant time

Summary

- OBDD
- Reduced graph representation of Boolean function
- Canonical for given variable ordering
- Selecting good variable ordering critical
- Minimize OBDD size
- Circuit embeddings provide effective guidance

V Variants and optimizations

- Reduce storage requirements
- Improve algorithmic efficiency
- Complicate programming and debugging

