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(Lec 3) Binary Decision Diagrams: Representation(Lec 3) Binary Decision Diagrams: Representation
What you know

Lots of useful, advanced techniques from Boolean algebra
Lots of cofactor-related manipulations
A little bit of computational strategy

Cubelists, positional cube notation
Unate recursive paradigm

What you don’t know
The “right” data structure for dealing with Boolean functions: BDDs
Properties of BDDs

Graph representation of a Boolean function
Canonical representation 

Efficient algorithms for creating, manipulating BDDs
Again based on recursive divide&conquer strategy

(Thanks to Randy Bryant for nice BDD pics+slides)
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HandoutsHandouts
Physical

Lecture 03 -- BDDs: Representation
Paper:  Symbolic Boolean Manipulation with Ordered Binary Decision 
Diagrams, ACM Computing Surveys, Sept 1992.

Electronic
Nothing today

Reminder
HW1 is due Thu in class
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Where Are We?Where Are We?
Still doing Boolean background, now focussed on data structs
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ReadingsReadings
In De Micheli book

pp 75-85 does BDDs, but not in as much depth as the notes

Randy Bryant paper
Symbolic Boolean Manipulation with Ordered Binary Decision 
Diagrams, ACM Computing Surveys, Sept 1992.  
Lots more detail (some of it you don’t need just yet) but very complete, 
if a bit terse.
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BDD HistoryBDD History
A little history...

Original idea for Binary Decision Diagrams due to 
Lee (1959) and Akers (1978)
Critical refinement–Ordered BDDs–due to Bryant (1986)

Refinement imposes some restrictions on structure
Restrictions needed to make result canonical representation

A little terminology
A BDD is a directed acyclic graph
Graph:      vertices connected by edges
Directed:  edges have direction  (draw them with an arrow)
Acyclic:    no cycles possible by following arrows in graph

Often see this shortened to “DAG”



Page 4

© R. Rutenbar 2001,     CMU 18-760, Fall 2001   7

GraphsGraphs
DAGs -- a reminder of some technicalities...

A graph
vertices + edges

A directed graph
...but not acyclic

A directed acyclic graph
...note that a “loop” is
not a directed cycle,
you are only allowed to
follow edges along 
direction that the
arrow points

vertex

edge
directed
edge
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Binary Decision DiagramsBinary Decision Diagrams
Big Idea #1:   Binary Decision Diagram

Turn a truth table for the Boolean function into a Decision Diagram
Vertices =
Edges =

Leaf nodes =
In simplest case, resulting graph is just a tree

Aside
Convention is that we don’t actually draw arrows on the edges in the 
DAG representing a decision diagram
Everybody knows which way they point, implicitly  

Point from parent to child in the decision tree

Look at a simple example...
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Binary Decision DiagramsBinary Decision Diagrams

Truth Table Decision Tree

• Vertex represents a decision

• Follow green (dashed) line for value 0

• Follow red (solid) line for value 1

• Function value determined by leaf value.

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

x3 x3

x2

x3 x3

x2

x1
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Binary Decision DiagramsBinary Decision Diagrams
Some terminology

A ‘variable’ vertex
The ‘lo’ pointer
to ‘lo’ son or
child of the 
vertex

The ‘hi’ pointer 
to ‘hi’ son or

child of the
vertex

A ‘constant’ vertex
at the bottom
leaves of the tree

The ‘variable ordering’, which is the
order in which decisions about vars
are made.    Here, it’s X1 X2 X3

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
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OrderingOrdering
Note:  Different variable orders are possible 

0 0

x3

1 1

x2 x2

Order for this subtree is
X2 then X3

Here, it’s 
X3 then X2

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
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Binary Decision DiagramsBinary Decision Diagrams
Observations

Each path from root to leaf traverses variables in a some order
Each such path constitutes a row of the truth table, ie, a decision about 
what output is when vars take particular values
But we have not yet specified anything about the order of decisions
This decision diagram is  not canonical for this function

Reminder:  canonical forms
Representation that does not depend on the logic gate implementation 
of a Boolean function
Same function (ie, truth table) of same vars always produces this exact 
same representation
Example:  a truth table is canonical

a minterm list, for our function f = Σ m(3,5,7), is canonical
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Binary Decision DiagramsBinary Decision Diagrams
What’s wrong with this representation?

It’s not canonical, 
Way too big to be useful
...in fact it’s every bit as big as a truth table: 1 leaf per row

Big idea #2:  Ordering
Restrict global ordering of variables
Means:

Note
It’s OK to omit a variable if you don’t need to check it to decide 
which leaf node to reach for final value of function
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Total OrderingTotal Ordering

Properties
No conflicting variable assignments along path (see each
var at most once walking down the path).
Simplifies manipulation 

OK Not OK
x1

x2

x3

x1

x3

x3

x2

x1

x1

x1

Assign arbitrary total ordering to variables

Variables must appear in this specific order along all paths
x1 < x2 < x3



Page 8

© R. Rutenbar 2001,     CMU 18-760, Fall 2001   15

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

Binary Decision DiagramsBinary Decision Diagrams
OK, now what’s wrong with it?

Variable ordering simplifies things...
...but representation still too big
...and still not necessarily canonical

1

Original decision diagram

Equivalent, but
different diagram

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
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Binary Decision DiagramsBinary Decision Diagrams
Big Idea #3:  Reduction

Identify redundancies in the DAG that can remove unnecessary nodes 
and edges
Removal of X2 node and its children, replacement with X3 node is an 
example of this sort of reduction

Why are we doing this?
To combat size problem:  want DAGs as small as possible
To achieve canonical form:  for same function, given total variable    

order, want there to be exactly one
graph that represents this function



Page 9

© R. Rutenbar 2001,     CMU 18-760, Fall 2001   17

Reduction RulesReduction Rules
Reduction Rule 1:  Merge equivalent leaves

‘a’ is either a constant 1 or constant 0 here
Just keep one copy of the leaf node
Redirect all edges that went into the redundant leaves 
into this one kept node 

aa a
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Reduction RulesReduction Rules
Apply Rule 1 to our example...

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1
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Reduction RulesReduction Rules
Reduction Rule 2:   Merge isomorphic nodes 

Isomorphic:  Means 2 nodes with same var and identical children
You cannot tell these nodes apart from how they contribute to 
decisions as you decend thru DAG
Note:  means exact same physical child nodes, 

not just children with same labels
Remove redundant node  (extra ‘x’ node here)
Redirect all edges that went into the redundant node into the one copy 
that you kept  (edges into right ‘x’ node now into left as well)

y

x

z

x

y

x

z
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Reduction RulesReduction Rules
Apply Rule 2 to our example

x3 x3

x2

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1
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Reduction RulesReduction Rules
Reduction Rule #3:  Eliminate Redundant Tests

Test:  means a variable node here...
It’s redundant since both of its children go to same node...
...so we don’t care what value x node takes in this diagram

Remove redundant node
Redirect all edges into the redundant node (x) into the one child node 
(y) of the removed node

y

x

y
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x2

0 1

x3

x1

Reduction RulesReduction Rules
Apply Rule #3 to our example

x3

x2

0 1

x3

x2

x1

x3

x2

0 1

x3

x2

x1
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Binary Decision DiagramsBinary Decision Diagrams
How to apply the rules?

For now, just iteratively, keep trying to find places the rules “match” 
and do the reduction
When you can’t find any more matches, the graph is reduced

Is this how programs really do it?
Nope, there’s some magic one can do with a clever hash table, but more 
about that later, when we start doing algorithms to manipulate BDDs
Roughly speaking, in real programs you build the BDDs correctly on the 
fly--you never build a bad, noncanonical one then try to fix it.
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BDDs:  Big ResultsBDDs:  Big Results
Recap:  what did we do?

Start with any old BDD
...ordered the variables => Ordered BDD  (OBDD)
...reduced the DAG => Reduced Ordered BDD (ROBDD)

Big result
ROBDD is a canonical form for Boolean function

Same function always generates exactly same DAG...
...for a given variable ordering

Two functions identical if and only if ROBDD DAGs isomorphic

ie, they are identically the same graph
Nice property to have:  simplest form of DAG is canonical
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BDDs: Representing Simple ThingsBDDs: Representing Simple Things
Note: can represent any function as a ROBDD

Here is the ROBDD for the function f(x1,x2,...xn) = 0

Here is the ROBDD for the function f(x1,x2,...xn) = 1

Here is the ROBDD for the function f(x1, ..., x, ..., xn) = x

Unique unsatisfiable function

Unique tautology function

Treat variable
as function

1

0

0 1

x
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Binary Decision DiagramsBinary Decision Diagrams
Assume variable order is X1, X2, X3, X4

Odd Parity

Linear
representation

Typical Function

x2

x3

x4

10

x4

x3

x2

x1

x2

0 1

x4

x1 • (x1 + x2 )x4

• No vertex labeled x3

– independent of x3

• Many subgraphs shared 
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Sharing in BDDsSharing in BDDs
Technical aside

Every node in a BDD (in addition to the root) represents some Boolean 
function in a canonical way

BDDs are incredibly good at extracting and representing this kind of
sharing of subfunctions in subgraphs

x2

0 1

x4

x1

x2 •x4

(x1 + x2 )x4

x2

x3

x4

10

x4

x3

x2

x1

( x3 ⊕ x4 ) ’

x1 ⊕ x2 ⊕ x3 ⊕ x4

x3 ⊕ x4

x4 ‘
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BDD ApplicationsBDD Applications
Aside: some nice, immediate applications

Tautology checking 
Was complex with the cubelist representation, required divide 
&conquer algorithm, lots of manipulation
With BDDs, it’s trivial.  Just see if the BDD for function ==

Satisfiability == can you find assignment of 0s & 1s to vars to make the 
function == 1?

No idea how to do it with cubelists
With BDDs, any path to           node from root is a solution 

1

1

x2

0 1

x4

x1

Satisfiability:   X1 X2 X3 X4 =                              
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BDD Variable OrderingBDD Variable Ordering
Question: Does variable ordering matter?    YES!

Good Ordering Bad Ordering

Linear Growth Exponential Growth

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

a1 b1 + a2 b2 + a3 b3
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Variable Ordering: ConsequencesVariable Ordering: Consequences
Interesting problem

Some problems that are known to be exponentially hard to solve 
work out to be very easy on BDDs
Trouble is, they are only easy when the size of the BDD that 
represents the problem is “reasonable”
Some input problems make nice (small) BDDs, 
others make pathological (large) BDDs
No universal solution (or else we’d always be able to solve 
exponentially hard problems easily)

How to handle?
Variable ordering heuristics: make nice BDDs for reasonable probs
Basic characterization of which problems never make nice BDDs
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Variable OrderingVariable Ordering
Analogy to “bit-serial” computing useful here...

Operation
Suppose this machine reads your function inputs 1 bit at a time...
...ie, in a certain variable order.
Stores information about previous inputs to correctly deduce function 
value from remaining inputs.

Relation to OBDD Size
If this ‘machine’ requires K bits of memory at step i...
...then the OBDD has ~ 2K branches crossing level i.

K-Bit
Memory

Bit-Serial
Processor

0
or
1

000
x1x2xn

f(x1, x2, x3, ..., xn)
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Variable Ordering:  ExampleVariable Ordering:  Example

at level 3
3 edges cross

at level 3
8 edges cross

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

a1 b1 + a2 b2 + a3 b3
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Variable Ordering:  IntuitionVariable Ordering:  Intuition
Idea:  Local Computability

Inputs that are closely related should be kept near each other in the 
variable order
Groups of inputs that can determine the function value by themselves 
should be close together

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

a1 b1 + a2 b2 + a3 b3
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Variable Ordering:  IntuitionVariable Ordering:  Intuition
Idea:  Power to control the output

The inputs that “greatly affect” the output should be early in the 
variable order
“Greatly affect” means almost always changes the output when this 
input changes
Example: multiplexer

D0

D1

S

out

sel

order: S < D0 < D1 order: D1 < D0 < S
0

1
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Variable OrderingVariable Ordering
What use is any of this? Suggests ordering heuristic...

Suppose I have a logic network like this...

Now, redraw to represent circuit as linear arrangement of its gates
Constraint:  all the output-to-input wires go left-to-right in this order
Called a topological ordering

w = 4

function output

x4

x5
x3 x2 x1

X1
X2
X3

X4

X5

output

Primary inputs represented by “source” blocks
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Variable OrderingVariable Ordering

Parameters
Number of primary inputs = n
“Bandwidth” = w = number of wires cut at widest point

Useful result:   Size upper bound [Berman, IBM]
Can represent with OBDD with <= n 2w nodes
Order variables in reverse of source block ordering

Means list vars right to left in the above picture...

w = 4

function output

x4

x5
x3 x2 x1
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Variable OrderingVariable Ordering
Reasoning here goes like this...

All info about vars > i encoded in w bits...
...so at most 2

w
distinct decisions, which bounds number of branch 

destinations from levels < i to levels <= i

xi

xi

•
•
•

0

1

<= 2w

BDD root

BDD 
leaves

xn
x1xi

w
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Variable OrderingVariable Ordering
Linear circuit example:  4 bit adder sum, MSB

How to order vars for a simple 4-bit carry ripple adder, Sum MSB?

Answer:  Use nice property of our adder circuit
It has Constant bandwidth   =>  Linear OBDD size

w = 3

b0

a0
b1

a1
b2

a2
b3

a32/3 2/3 2/3
S 3

0

4 bit ripple adder

a3 b3 a0 b0a1 b1a2 b2

S3
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Aside:  Variable OrderingAside:  Variable Ordering
Generalization

Many carry chain circuits have constant bandwidth
Examples

Comparators
Priority encoders
ALUs
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Variable Ordering HeuristicsVariable Ordering Heuristics
Heuristic ordering methods

Take advantage of this “linear ordering” idea
Input:      gate-level logic network we want to build a BDD for
Output:   global variable ordering to use
Method:  topological analysis, aka, “walking” the network graph...

a

b
c

d

e

Input Netlist Ordering

b < a < d < c < e?

a < b < c < d < e?

e < d < c < b < a?
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Example:  Dynamic Weight Assignment HeuristicExample:  Dynamic Weight Assignment Heuristic
Concrete example:  Minato’s heuristic

Pick a primary output;  put a weight  “1” there
For each gate with weights on its output but not its input, “push” the 
weight thru to the inputs, dividing by the number of inputs.  Each input 
gets equal weight.
If there is fanout (one wire goes to >= 2 inputs) then ADD the weights 
to get the new weight for this wire.
If there is more than 1 output, start with the one that has the deepest 
logic depth from the inputs
Continue till all primary inputs are labeled

a

b
c

d

e

a

b

c

d

e
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Dynamic Weight AssignmentDynamic Weight Assignment
Minato’s heuristic

Pick the primary input with the biggest weight.  Put it first in var order.
Erase the subcircuit (wires, input pins, entire gates if they have only one 
“active” pin left) that are reachable only from this primary input we 
selected.
Go back and reassign the weights again in the new, smaller circuit.

a

b
c

d

e

1

1/2

1/2

1/4

1/6
5/12

a

b

c

d

e1

4/6

1/2
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Dynamic Weight AssignmentDynamic Weight Assignment
Just continue

a

b

c

d

e

a

b
c

d

e

a

b
c

d

e

a

b

c

d

e
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Dynamic Weight AssignmentDynamic Weight Assignment
Minato’s method

Iteratively picks the next variable in the order using the simple weight 
propagation idea
Tries to order all vars starting from the “deepest” output
Deletes the ordered var, erases wires/gates, repeats till all ordered

How well does it work?
Fairly well.  Very simple to do.  Lots better than random order.
OK complexity == O( #gates • #primary inputs)

Notes
There are other, better, more complex heuristics
Also, the ordering does NOT have to be static, it can change dynamically 
as the BDD is used



Page 23

© R. Rutenbar 2001,     CMU 18-760, Fall 2001   45

Variable Ordering HeuristicsVariable Ordering Heuristics
Alternative:  Suppose your network is a tree

Start at the output
Do a postorder traversal of tree
Write down variables in order visited by the tree walk

Remember postorder walk?
Visits the nodes, ie, gates, in a
deterministic order
Ignore primary inputs (for now)

postorder (TreeNode) {
if (TreeNode.TopChild != null)

postorder( TreeNode.TopChild)
if (TreeNode.BotChild != null)

postorder( TreeNode.BotChild)
write out TreeNode name

}

A
B

C

D
E
F

GH
I

B1

B2

B3

B4

B5

B6

B7

B8
root

Nodes finished as:
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Variable Ordering HeuristicsVariable Ordering Heuristics
In our case

Tree might not be binary -- not a big deal  
Just use some consistent order for 
exploring the children nodes
Visits variables in reverse order

Why is this a good heuristic?
It makes a linear ordering of ckt
Bandwidth is O(logN) for N blocks
OBDD size is O(N

2
)

LowestHighest

A
B

C

D
E
F

GH
I

B1

B2

B3

B4

B5

B6

B7

B8

A B C DE F GH I

B1 B2 B3 B4B5 B6 B7 B8
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Variable Ordering HeuristicsVariable Ordering Heuristics
What if network is not a tree?

More general, more common case
Some terminology: Reconvergent fanout

When one input or intermediate output has multiple paths to the 
final network output, fanout is called reconvergent
If you don’t have a tree, you have this

Reconvergent fanout

A
B

C

D
E
F

GH
I

B1

B2

B3

B4

B5

B6

B7

B8
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Variable Ordering HeuristicsVariable Ordering Heuristics
For general logic networks

Still try to do a depth-first walk of the graph, output to inputs
Try to walk the graph like it was a tree, giving priority 
to nets that have multiple fanouts

An ordering...
B < A < C < D < E < F < G < H < I

A
B

C

D
E
F

GH
I

B1

B2

B3

B4

B5

B6

B7

B8
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Ordering:  ResultsOrdering:  Results

General Experience
Many tasks have reasonable OBDD representations
Algorithms remain practical for up to millions of OBDD nodes.
Heuristic ordering methods are generally OK, though it may take 
effort to find a heuristic that works well for your problem
So-called dynamic variable ordering -- reordering your BDD vars as 
your BDD gets used, to improve the size -- is essential today

Function Class Best Worst

Addition linear exponential

Symmetric linear quadratic

Multiplication exponential exponential
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Binary Decision DiagramsBinary Decision Diagrams
Variants and optimizations

Refinements to OBDD representation
Do not change fundamental properties

Primary Objective
Reduce memory requirement
Critical resource
Constant factors matter

Secondary Objective
Improve Algorithmic Efficiency
Make commonly performed operations faster

Common Optimizations
Share nodes among multiple functions
Negated arcs
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Binary Decision Diagrams:  SharingBinary Decision Diagrams:  Sharing
Sharing, revisited

We mentioned BDDs good at representing shared subfunctions
Consider this example from a 4 bit adder:  sum msb and carry out 

b3

b2

b1

0

b0

a0

b1

a1

b2

a2

1

b3

a3

Cout

b3

b2

b1

b0

a0

b1

a1

b2

a2

b2

b1

0

b0

a0

b1

a1

1

b2

a2

b3

a3

S 3

XorNegative
Logic
Carry
Chain

Positive
Logic
Carry
Chain

Basically same
shared

subfunction
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Sharing:  Multi-rooted DAGSharing:  Multi-rooted DAG
Don’t need to 
represent it twice

A BDD can have multiple 
‘entry points’, or roots
Called a multi-rooted DAG

Recall
Every node in a BDD 
represents some Boolean 
function
This multi-rooting idea just 
explicitly exploits this to 
better share stuff

b3 b3

a3

Cout

b3

b2

b1

b0

a0

b1

a1

b2

a2

b2

b1

0

b0

a0

b1

a1

1

b2

a2

b3

a3

S 3

Positive
Logic
Carry
Chain

2 roots
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Sharing:  Multi-rooted DAGSharing:  Multi-rooted DAG
Why stop at 2 roots?

For many collections of functions, 
there is considerable sharing
Idea is to minimize size wrt several 
separate BDDs by max sharing

Example: Adders
Separately

51 nodes for 4-bit adder
12,481 for 64-bit adder
Quadratic growth

Shared
31 nodes for 4-bit adder
571 nodes for 64-bit adder
Linear growth

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S 3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S 2

b1

a0 a0

b1

a1

S 1

b0

10

b0

a0

S 0
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BDD Sharing:  IssuesBDD Sharing:  Issues
Storage model

Single, multi-rooted DAG
Function represented by pointer to node in DAG
Be careful to apply reduction ops globally to keep all canonical

Every time you create a new function, gotta go look in your big 
multi-rooted DAG to see if it already exists, inside, somewhere

Storage management
User cannot know when storage for node can be freed
Must implement automatic garbage collection...

...or not try to free any storage
Significantly more complex programming task

Algorithmic efficiency
Functions equivalent if and only if pointers equal

if (p1 == p2) …
Can test in constant time
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Optimization:  Negation ArcsOptimization:  Negation Arcs
Concept

Dot on arc represents complement operator
Inverts function value of BDD reachable “below the dot”

Can appear on internal or external arc

negation

a+b

0

b

1

a

~(a+b)a+b

0

b

1

a

~(a+b)

0

b

1

a

a+~b

0

b

1

a

a+~b

© R. Rutenbar 2001,     CMU 18-760, Fall 2001   56

Canonical FormCanonical Form

⇒
No Double Negations

Rule #1 Rule #2

No Negated Hi Pointers

Must have conventions for use of negative arcs
Express as series of transformation rules
These are really nothing more than DeMorgan laws

x x⇒

x x⇒

x x⇒

x x⇒
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Aside: Why Does This Work...?Aside: Why Does This Work...?
Just like Shannon expansion, applied again

..with prudent use of the basic DeMorgan laws.

No Negated Hi Pointers

x x⇒
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Aside: Why Does This Work...?Aside: Why Does This Work...?
Just like Shannon expansion, applied again

No Negated Hi Pointers

x x⇒
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Transformation Rules (Cont.)Transformation Rules (Cont.)

Rule #3

No Negated Constants

Rule #4

No Hi Pointers to 0

a ~a
⇒x x

0 1

x x⇒
0 1

⇒x x

0 1

x x⇒
0 1
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Transformation ExampleTransformation Example
Example of applying the rules

Tends to get “nand-like” DAGs

0 1

b

a

~a+~b

0 1

b

a
⇒

0 1

b

a

~(a · b)

⇒

0 1

b

a
⇒

k ~k
⇒x x⇒
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Negation Arc ExamplesNegation Arc Examples

b2

b1

0

b0

a0

b1

a1

1

b2

a2

b3

a3

S 3

b3 b3

a3

Cout

b2 b2

a2

b3

a3

S 3

b1 b1

a1

b2

a2

S 2

a0

b1

a1

S 1

0 1

b0

a0

S 00 1

x4

x3

x2

x1

Odd Parity

MSB of Sum All Adder Functions
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Effect of Negation ArcsEffect of Negation Arcs
Storage savings

At most 2X reduction in number of nodes

Aside: can people really do this “negation” thing in their 
heads by looking at a normal BDD?

Nope
Takes lots of practice even to be able read these things
Just useful because of the 2X space efficiency

Algorithmic improvement
Can complement function in constant time
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SummarySummary

OBDD
Reduced graph representation of Boolean function
Canonical for given variable ordering

Selecting good variable ordering critical
Minimize OBDD size
Circuit embeddings provide effective guidance

Variants and optimizations
Reduce storage requirements
Improve algorithmic efficiency
Complicate programming and debugging


