(Lec 0) Introduction: 18-760 Fall 2001

VLSI CAD: Logic to Layout
» Faculty: Rob Rutenbar x8-3334 HH3015 rutenbar@ece.cmu.edu
» TA: still looking...
» Secretary: Lyz Knight x85087 HH3107 lyz@ece.cmu.edu
» URL: http://www.ece.cmu.edu/~ee760

N Course materials

» Book
» Synthesis and Optimization of Digital Circuits, Giovanni DeMicheli

» Notes
» | teach on color foils (like this one...)
» You get hard copy at beginning of each class
» Old copies of stuff shelf on 3rd floor of HH, and pdf’'s on web

© R. Rutenbar 2001 Fall 18-760 Page 1

Obligatory Copyright Notice

U put this stuff out on the web, so every talk has this:

© Rob A. Rutenbar, 2001
All rights reserved.

You may not make copies of this
material in any form without my
express permission.

© R. Rutenbar 2001 Fall 18-760 Page 2

Page 1

N Physical
» Lecture 00 -- Introduction
» Lecture 0l -- Advanced Boolean Algebra
» Syllabus

N Electronic
» Go look on the web site to get the 2-page course syllabus as a pdf

© R. Rutenbar 2001 Fall 18-760 Page 3

Aids for the Navigationally Impaired

N Hamerschlag Hall Knight

Rutenbar

1st floor 2nd floor 3rd floor

il

Elevator
- ——
1
R et
Front door
© R. Rutenbar 2001 Fall 18-760 Page 4

Page 2

Pre-Requisites

N Computer science knowledge

» Programming and data structures (at CMU, 15-211, maybe also 15-213)
» Basic complexity ideas, eg, why O(n?) is worse than O(n log n)

» Ability to write a medium size program -- 1000-2500 lines of C or C++
code -- without any hand holding from me, in about 3 weeks

N Computer engineering knowledge

» Basic digital design (gates, flip flops, Boolean algebra, Kmaps)
» Combinational and sequential design (finite state machines)

N Discrete math

» Basic sets, functions, careful notation

» Exposure to graph theory is nice but not essential (15-211 is fine)

© R. Rutenbar 2001 Fall 18-760 Page 5

N No real exams

N Homeworks (40%)

» About 6 in all, about every other week (with a few breaks)

» Mechanical work-it-through problems, small proofs, algorithm
manipulations

» Small programs (300-400 lines of code) to try things out
N Projects (45%)

» | smaller one (5%) and 2 larger ones (20%, 20%)

» Bigger, ~2500 lines of code typically, done in groups of 2
N Papers (15%)

» 3 papers you read and write about

» Short reviews (4-pages or 10-Powerpoint slides) of a paper from the
literature, or compare and contrast of 2 papers from literature

© R. Rutenbar 2001 Fall 18-760 Page 6

Page 3

Undergrad versus Grad Students

N Undergrads

» Expectation is for you to keep up, absorb the “big ideas”

N Grads

» Expectation is for you to absorb it all

N Note
» Diverse class this year, as usual
» Some maybe took 18-360 (which uses versions of my 760 notes!)
» Some folks complete rookies
» My problem to keep it all interesting for everybody...

© R. Rutenbar 2001 Fall 18-760 Page 7

So What'’s the Course All About...?

N CAD for semi-custom ASICs
» ASIC = application-specific integrated circuit
» Semi-custom = try to design reusing some already designed parts
» CAD = flow through a sequence of design steps and software tools

Spectrum of design approaches

Semi-custom means
try to use stuff already
designed, from library

Fully custom means everything done by hand,
mostly at the transistor circuit and layout level

© R. Rutenbar 2001 Fall 18-760 Page 8

Page 4

Buzzword Acronym Lexicon

N Semi-custom ASIC

» Application-specific IC - when you design a chip for a specific task using
mostly semi-custom techniques

» Don’t expect to make a zillion of them, so can’t afford full custom;
OR you need a chip really quick, so can’t afford full custom

» Not as dense (transistors / area) or as fast (MHz) as full custom

X Full custom IC

» Well, really a misnomer, since almost nothing is absolutely custom,
completely done by hand

» Almost every custom chip has big chunks of semi-custom function since
there are good tools for this stuff

» Examples: your favorite microprocessor

© R. Rutenbar 2001 Fall 18-760 Page 9

Example Modern System-on-a-Chip IC

N Lots of big, separate chunks

Random Memory
RISC Logic
CPU Al
Core

_— Datapath

© R. Rutenbar 2001 Fall 18-760 Page 10

Page 5

Useful Components in Semi-Custom?

X Logic gates
» Maximally useful components you can reuse

» Can design without knowing exactly what gates (type, speed, power,
size) you have: technology independent design

» Later, can map technology independent design onto your specific gate
library (your “technology’’): technology mapping problem

N Memories

» Usually, a program called a module generator transforms specs on size
(bits, words, speed, etc) into the final layout

» Doable since these are very structured designs
N Datapaths
» Again, fairly well structured to do adders, multipliers, etc

» Often not designed entirely at gate level, since need transistor hacking
for best performance

» Again, a module generator can produce them
N Even entire CPUs -- called “cores”

© R. Rutenbar 2001 Fall 18-760 Page 11

Real Example

N They really do look
like this...

© R. Rutenbar 2001 Fall 18-760 Page 12

Page 6

Real Example: Called “System on Chip” or SoC

N Look at blocks il 1 ln LT

Random — |
control
logic

CPU core _——

Analog interface
to external world

© R. Rutenbar 2001 Fall 18-760 Page 13

What are We Focusing On?

N Gates as the central components of technology
» This is where most of the interesting algorithms are
» Also, prevents us from having to go do any serious “electricity’ stuff

X What are gates good for?
» Blobs of random logic

» Techniques are great for controllers, so-called glue logic, bus interfaces,
finite state machines, etc

X 'What are gates less good for?

» Datapaths (arithmetic) where you can usually do better by designing at
the transistor level

» But—people do really use gates for lots of real datapaths

© R. Rutenbar 2001 Fall 18-760 Page 14

Page 7

Semi-Custom ASICs

N Mostly made out of so-called “standard cells”

» Standard cell = | gate (might be a complex gate, though)
» Usually arranged in rows on surface of the IC

Random
RISC Logic

CPU v
Core (

g | _— Datapath

© R. Rutenbar 2001 Fall 18-760 Page 15

Memory

Example Semi-Custom ASIC

N Possible to do everything as standard cells
» Less dense, less performance than custom

» But certainly possible. Indeed, maybe desirable if your concern is
designing something really quickly to get a product out
» Can do really complicated stuff, fast, this way

» Example: most PC 3D graphics
chips done like this

Example Inoue et al,

Dec 1993 JSSC,
300MHz 16 bit BiIMOS

Video Signal Processor

© R. Rutenbar 2001 Fall 18-760 Page 16

Page 8

CAD Flow

N So how do people attack designs like this?

N Big idea: Levels of abstraction
» Break the problem down into a lot of smaller steps
» Each step renders the design a little less abstract, a little more real
» Synthesis tools go forward in design process: make new stuff
» Verification steps look backward in process: check that stuff worked

Step 1

B sers
L\V.'.

© R. Rutenbar 2001 Fall 18-760 Page 17

ASIC CAD Tool Flow

High-level
description

Behavioral
Synthesis

Technology
Mapping

Verification,
Test
L' Timing, Power
Estimation
Lv Partitioning
Rz
Layout

© R. Rutenbar 2001 Fall 18-760 Page 18

Page 9

High-Level (Behavioral) Synthesis

X What goes in?

» High-level description of desired system function, usually as a program
in a hardware description language like Verilog or VHDL

N What comes out?

» Register transfer level structure: FSMs, logic, ALUs, memory, busses

N Our coverage?

» Zero. Sorry, no time.

__ DataPath
Constraints
for (j=0;j <16;j=j+1)
begin Behavioral /
| »| Behaviora
tmp =tmp + An [i,j] * x [j]; Synthesis
if (< 13) Y ! \ Control Sequence
tmp =t +k [i,jl * y (1
o mp =t mp + k [i,j] * y [i] ? State 1 (
Technology

Information)

© R. Rutenbar 2001 Fall 18-760 Page 19

Logic Synthesis

X 'What goes in?

» Boolean equations, state diagrams, etc

N What comes out?

» Gates and connections - called a netlist, a structural design

N Our coverage
» About 6 lecs + 2 background

.
Boolean Logi b
gic >
equations Synthesis ¢ }
d

© R. Rutenbar 2001 Fall 18-760 Page 20

Page 10

Technology Mapping

X What goes in?

» Technology-independent gate-level design (so-called uncommitted design)

N What comes out?

» Gate level design that uses your gate technology library
N Our coverage
» About | lecs

- 18
b :’,’7 BN Technology |[HEENGEECENE
c Mapping b ——:’

— D c TRV

d——

2 OR-AND complex
gates in library

© R. Rutenbar 2001 Fall 18-760 Page 21

Formal Verification

X 'What goes in?

» A specification for a design (eg, Boolean eqns) and an implementation of
the design (eg, gates)

N What comes out?
» A decision yes/no: is specification == implementation, same function?
» Note, ‘“formal’ verification means it’s proved yes/no, unlike simulation
N Our coverage
» About 5 lecs, + 2 background

VLGl —> yes / no

EES-_ /
g2 8

© R. Rutenbar 2001 Fall 18-760 Page 22

Page 11

Test (Automatic Test Pattern Generation, ATPG)

X What goes in?
» A gate level design
» List of possible faults in the circuit you wish to be able to discover

N What comes out?

» Patterns of inputs that will make the circuit produce a wrong answer if
any of these faults are present in the manufactured part

N Our coverage
» Again, none -- go look at 18-765

* - a=0 a=|
bj_g — ATPG — b=l b=l o o
c
c=0 =0
d :-— d=1 d=0
© R. Rutenbar 2001 Fall 18-760 Page 23

Timing Estimation

N 'What goes in?
> A gate level design, with timing info about gates and wires
X What comes out?

» Delay estimate -- how long to go through this logic network?
N Our coverage
» About 2 lecs (logical timing)

a A=4

A=3
A=1 -
b S
C:’_’— — BRI ——
g —
A=

d —

© R. Rutenbar 2001 Fall 18-760 Page 24

Page 12

Row-Based Semi-Custom Layout

N What goes in?

» A gate level design, gates+wires
X What comes out?

» A placement of cells into rows, with wiring over the top of the cells
N Our coverage

» About 7 lecs

@ Row-based
Layout

_d
Wiring

© R. Rutenbar 2001 Fall 18-760 Page 25

Electrical Timing Issues

(OK, I lied when I said “no electricity”...)
N What goes in?
» Geometric information about actual wiring patterns

N What comes out?

» Delay estimate -- how long to go through this electrical network?
N Our coverage
» | lec

a

/\m_’: ‘_A=4

=3 D

© R. Rutenbar 2001 Fall 18-760 Page 26

Page 13

Mask Geometry: Representing & Checking

X What goes in?
» A mask, ie, geometry of layout of an IC

N What comes out?

» Location of violations of rules in masks, and extracted netlist of what
devices the mask actually implements

N Our coverage a
» About 3 lecs b }t X ?—
Ly

Cells
Row-based

> Layout
D
Wiring

© R. Rutenbar 2001 Fall 18-760 Page 27

18-760 Topical Summary

N 760 is about the flow of tools used to do
modern semi-custom ASICs
» Cover core algorithms in detail
» Both synthesis and verification
» Emphasis is Boolean stuff, timing stuff, rectangles stuff
» Only a very little EE-type electricity stuff

N What else?

» Context and ‘“ambience’: what’s cool, what’s easy, what’s hard, etc
» Where the complete solutions are, where we have to use heuristics
» You should acquire the ability to read the CAD literature from 760

© R. Rutenbar 2001 Fall 18-760 Page 28

Page 14

18-760 Topical Summary

X Why is this cool?

Wncreasingly, the problem is
methodology -- the tool flow
» Individual algorithms work OK alone...

» ..but together the overall result of the
“flow” doesn’t work

N Example: Nanometer CMOS scaling

» Individual devices and wires are very small
now, << | pm

5-layer metal cross section
» Next-gen CMOS technology ~ 0.1 um from IBM PowerPC
~ 200 atoms wide wires & FET-gates

» Nasty physics dominates: much of the
delay is from the wires and not the gates,
nearby devices affect each other, etc

© R. Rutenbar 2001 Fall 18-760 Page 29

Nanometer Technology Example

N Convergence problems between synthesis & layout

Design spec

Logic
Synthesis

Layout

A=12...00ps!

J

Gate network designed
without real knowledge
of wire delays. Failure--

Now what?
After layout, timing is
Go back to synthesis? violated due to wiring.
Redo layout with same
netlist? Perturb both
logic and layout?

© R. Rutenbar 2001 Fall 18-760 Page 30

Page 15

Now What?

N On to Boolean algebra...

M T W Th F
Aug27
Sep[3 [4 |5 [6 [7]2
(o 11 12 13 _[i4 |3

7 18 _J19 20 21 |4
24 25 26 [27 28 |5

Oct[l [2 [3 [4 [5 |6
[8 J9 Tto [i1r Jiz |7
15 (16 [17 18 TEMM s
PPIl23 24 25 [26 |9
29 [30 BI 1 2 J10

Nov[s T6 [7 T8 [9]ilI
(12 I3 _[14 15 J16 12
Thnxgive[19 20 FINIFYIIFEIN 13
26 [27 [28 [29 [30 |14

Dec[3 [4 [5 [6 [7 115
o i1 12113 Ji4 16

Introduction

Advanced Boolean algebra
JAVA Review

Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement

Routing

Static timing analysis
Electrical timing analysis
Geometric data structs & apps

© R. Rutenbar 2001 Fall 18-760 Page 31

Page 16

