
Page 1

© R. Rutenbar 2001 Fall 18-760 Page 1

(Lec 0) Introduction: 18-760 Fall 2001(Lec 0) Introduction: 18-760 Fall 2001
VLSI CAD: Logic to Layout

Faculty: Rob Rutenbar x8-3334 HH3015 rutenbar@ece.cmu.edu
TA: still looking…
Secretary: Lyz Knight x85087 HH3107 lyz@ece.cmu.edu

URL: http://www.ece.cmu.edu/~ee760

Course materials
Book

Synthesis and Optimization of Digital Circuits, Giovanni DeMicheli

Notes
I teach on color foils (like this one...)
You get hard copy at beginning of each class
Old copies of stuff shelf on 3rd floor of HH, and pdf’s on web

© R. Rutenbar 2001 Fall 18-760 Page 2

Obligatory Copyright NoticeObligatory Copyright Notice
I put this stuff out on the web, so every talk has this:

© Rob A. Rutenbar, 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001 Fall 18-760 Page 3

HandoutsHandouts
Physical

Lecture 00 -- Introduction
Lecture 01 -- Advanced Boolean Algebra
Syllabus

Electronic
Go look on the web site to get the 2-page course syllabus as a pdf

© R. Rutenbar 2001 Fall 18-760 Page 4

1st floor 2nd floor 3rd floor

Front door

Rutenbar
Knight

Elevator

Elevator

Aids for the Navigationally ImpairedAids for the Navigationally Impaired
Hamerschlag Hall

Page 3

© R. Rutenbar 2001 Fall 18-760 Page 5

Pre-RequisitesPre-Requisites
Computer science knowledge

Programming and data structures (at CMU, 15-211, maybe also 15-213)
Basic complexity ideas, eg, why O(n2) is worse than O(n log n)
Ability to write a medium size program -- 1000-2500 lines of C or C++
code -- without any hand holding from me, in about 3 weeks

Computer engineering knowledge
Basic digital design (gates, flip flops, Boolean algebra, Kmaps)
Combinational and sequential design (finite state machines)

Discrete math
Basic sets, functions, careful notation
Exposure to graph theory is nice but not essential (15-211 is fine)

© R. Rutenbar 2001 Fall 18-760 Page 6

GradingGrading
No real exams

Homeworks (40%)
About 6 in all, about every other week (with a few breaks)
Mechanical work-it-through problems, small proofs, algorithm
manipulations
Small programs (300-400 lines of code) to try things out

Projects (45%)
1 smaller one (5%) and 2 larger ones (20%, 20%)
Bigger, ~2500 lines of code typically, done in groups of 2

Papers (15%)
3 papers you read and write about
Short reviews (4-pages or 10-Powerpoint slides) of a paper from the
literature, or compare and contrast of 2 papers from literature

Page 4

© R. Rutenbar 2001 Fall 18-760 Page 7

Undergrad versus Grad StudentsUndergrad versus Grad Students

Undergrads
Expectation is for you to keep up, absorb the “big ideas”

Grads
Expectation is for you to absorb it all

Note
Diverse class this year, as usual
Some maybe took 18-360 (which uses versions of my 760 notes!)
Some folks complete rookies
My problem to keep it all interesting for everybody...

© R. Rutenbar 2001 Fall 18-760 Page 8

So What’s the Course All About...?So What’s the Course All About...?
CAD for semi-custom ASICs

ASIC = application-specific integrated circuit
Semi-custom = try to design reusing some already designed parts
CAD = flow through a sequence of design steps and software tools

Spectrum of design approaches

Fully custom means everything done by hand,
mostly at the transistor circuit and layout level

Semi-custom means
try to use stuff already
designed, from library

Page 5

© R. Rutenbar 2001 Fall 18-760 Page 9

Buzzword Acronym LexiconBuzzword Acronym Lexicon
Semi-custom ASIC

Application-specific IC - when you design a chip for a specific task using
mostly semi-custom techniques
Don’t expect to make a zillion of them, so can’t afford full custom;
OR you need a chip really quick, so can’t afford full custom
Not as dense (transistors / area) or as fast (MHz) as full custom

Full custom IC
Well, really a misnomer, since almost nothing is absolutely custom,
completely done by hand
Almost every custom chip has big chunks of semi-custom function since
there are good tools for this stuff
Examples: your favorite microprocessor

© R. Rutenbar 2001 Fall 18-760 Page 10

Example Modern System-on-a-Chip ICExample Modern System-on-a-Chip IC
Lots of big, separate chunks

RISC
CPU
Core

Random
Logic Memory

Datapath

Page 6

© R. Rutenbar 2001 Fall 18-760 Page 11

Useful Components in Semi-Custom?Useful Components in Semi-Custom?
Logic gates

Maximally useful components you can reuse
Can design without knowing exactly what gates (type, speed, power,
size) you have: technology independent design
Later, can map technology independent design onto your specific gate
library (your “technology”): technology mapping problem

Memories
Usually, a program called a module generator transforms specs on size
(bits, words, speed, etc) into the final layout
Doable since these are very structured designs

Datapaths
Again, fairly well structured to do adders, multipliers, etc
Often not designed entirely at gate level, since need transistor hacking
for best performance
Again, a module generator can produce them

Even entire CPUs -- called “cores”

© R. Rutenbar 2001 Fall 18-760 Page 12

Real ExampleReal Example
They really do look
like this...

Page 7

© R. Rutenbar 2001 Fall 18-760 Page 13

Real Example: Called “System on Chip” or SoCReal Example: Called “System on Chip” or SoC
Look at blocks

Memories

Random
control

logic

CPU core

Analog interface
to external world

© R. Rutenbar 2001 Fall 18-760 Page 14

What are We Focusing On?What are We Focusing On?
Gates as the central components of technology

This is where most of the interesting algorithms are
Also, prevents us from having to go do any serious “electricity” stuff

What are gates good for?
Blobs of random logic
Techniques are great for controllers, so-called glue logic, bus interfaces,
finite state machines, etc

What are gates less good for?
Datapaths (arithmetic) where you can usually do better by designing at
the transistor level
But—people do really use gates for lots of real datapaths

Page 8

© R. Rutenbar 2001 Fall 18-760 Page 15

Semi-Custom ASICsSemi-Custom ASICs
Mostly made out of so-called “standard cells”

Standard cell = 1 gate (might be a complex gate, though)
Usually arranged in rows on surface of the IC

RISC
CPU
Core

Random
Logic Memory

Datapath

© R. Rutenbar 2001 Fall 18-760 Page 16

Example Semi-Custom ASICExample Semi-Custom ASIC
Possible to do everything as standard cells

Less dense, less performance than custom
But certainly possible. Indeed, maybe desirable if your concern is
designing something really quickly to get a product out
Can do really complicated stuff, fast, this way
Example: most PC 3D graphics
chips done like this

Example Inoue et al,

Dec 1993 JSSC,
300MHz 16 bit BiMOS

Video Signal Processor

Page 9

© R. Rutenbar 2001 Fall 18-760 Page 17

CAD FlowCAD Flow
So how do people attack designs like this?

Big idea: Levels of abstraction
Break the problem down into a lot of smaller steps
Each step renders the design a little less abstract, a little more real
Synthesis tools go forward in design process: make new stuff
Verification steps look backward in process: check that stuff worked

Step 1

Step 2

Step 3

Step 4

Step 5

• • •

© R. Rutenbar 2001 Fall 18-760 Page 18

ASIC CAD Tool FlowASIC CAD Tool Flow

Behavioral
Synthesis

Logic
Synthesis

Technology
Mapping

Partitioning

Timing, Power
Estimation

Row-based
Layout

DRC
Extract

High-level
description

Verification,
Test

Page 10

© R. Rutenbar 2001 Fall 18-760 Page 19

High-Level (Behavioral) SynthesisHigh-Level (Behavioral) Synthesis
What goes in?

High-level description of desired system function, usually as a program
in a hardware description language like Verilog or VHDL

What comes out?
Register transfer level structure: FSMs, logic, ALUs, memory, busses

Our coverage?
Zero. Sorry, no time.

Behavior

Behavioral
Synthesis

Control Sequence
State 1 (

....

....
)

Data Path
Constraints

Technology
Information

for (j = 0; j < 16; j = j + 1)
begin

tmp = tmp + An [i,j] * x [j];
if (j < 13)

tmp =t mp + k [i,j] * y [j];
end

© R. Rutenbar 2001 Fall 18-760 Page 20

Logic SynthesisLogic Synthesis
What goes in?

Boolean equations, state diagrams, etc

What comes out?
Gates and connections - called a netlist, a structural design

Our coverage
About 6 lecs + 2 background

Logic
Synthesis

a

b
c

d

Boolean
equations

Page 11

© R. Rutenbar 2001 Fall 18-760 Page 21

Technology MappingTechnology Mapping
What goes in?

Technology-independent gate-level design (so-called uncommitted design)

What comes out?
Gate level design that uses your gate technology library

Our coverage
About 1 lecs

Technology
Mapping

a

b
c

d

b
c
b
c

a

d

2 OR-AND complex
gates in library

© R. Rutenbar 2001 Fall 18-760 Page 22

Formal VerificationFormal Verification
What goes in?

A specification for a design (eg, Boolean eqns) and an implementation of
the design (eg, gates)

What comes out?
A decision yes/no: is specification == implementation, same function?
Note, “formal” verification means it’s proved yes/no, unlike simulation

Our coverage
About 5 lecs, + 2 background

Verification

a

b
c

d

b
c
b
c

a

d

yes / no

Page 12

© R. Rutenbar 2001 Fall 18-760 Page 23

Test (Automatic Test Pattern Generation, ATPG)Test (Automatic Test Pattern Generation, ATPG)
What goes in?

A gate level design
List of possible faults in the circuit you wish to be able to discover

What comes out?
Patterns of inputs that will make the circuit produce a wrong answer if
any of these faults are present in the manufactured part

Our coverage
Again, none -- go look at 18-765

ATPG

a

b
c

d

a=0
b=1
c=0
d=1

X

a=1
b=1
c=0
d=0

• • •

© R. Rutenbar 2001 Fall 18-760 Page 24

Timing EstimationTiming Estimation
What goes in?

A gate level design, with timing info about gates and wires

What comes out?
Delay estimate -- how long to go through this logic network?

Our coverage
About 2 lecs (logical timing)

Timing Est

a

b
c

d

a

b
c

d

∆=1

∆=3

∆=1

∆=4

Page 13

© R. Rutenbar 2001 Fall 18-760 Page 25

Row-Based Semi-Custom LayoutRow-Based Semi-Custom Layout
What goes in?

A gate level design, gates+wires

What comes out?
A placement of cells into rows, with wiring over the top of the cells

Our coverage
About 7 lecs

Cells

Wiring

Row-based
Layout

© R. Rutenbar 2001 Fall 18-760 Page 26

Electrical Timing IssuesElectrical Timing Issues
(OK, I lied when I said “no electricity”...)

What goes in?
Geometric information about actual wiring patterns

What comes out?
Delay estimate -- how long to go through this electrical network?

Our coverage
1 lec

Timing Est

a

b
c

d

∆=4

a

b
c

d

∆=3

Page 14

© R. Rutenbar 2001 Fall 18-760 Page 27

What goes in?
A mask, ie, geometry of layout of an IC

What comes out?
Location of violations of rules in masks, and extracted netlist of what
devices the mask actually implements

Our coverage
About 3 lecs

Mask Geometry: Representing & CheckingMask Geometry: Representing & Checking

Row-based
Layout

Cells

Wiring

a

b
c

d

x

© R. Rutenbar 2001 Fall 18-760 Page 28

18-760 Topical Summary18-760 Topical Summary
760 is about the flow of tools used to do
modern semi-custom ASICs

Cover core algorithms in detail
Both synthesis and verification
Emphasis is Boolean stuff, timing stuff, rectangles stuff
Only a very little EE-type electricity stuff

What else?
Context and “ambience”: what’s cool, what’s easy, what’s hard, etc
Where the complete solutions are, where we have to use heuristics
You should acquire the ability to read the CAD literature from 760

Page 15

© R. Rutenbar 2001 Fall 18-760 Page 29

18-760 Topical Summary18-760 Topical Summary
Why is this cool?

Increasingly, the problem is
methodology -- the tool flow

Individual algorithms work OK alone...
..but together the overall result of the
“flow” doesn’t work

Example: Nanometer CMOS scaling
Individual devices and wires are very small
now, << 1 µm
Next-gen CMOS technology ~ 0.1 µm
~ 200 atoms wide wires & FET-gates
Nasty physics dominates: much of the
delay is from the wires and not the gates,
nearby devices affect each other, etc

5-layer metal cross section
from IBM PowerPC

© R. Rutenbar 2001 Fall 18-760 Page 30

Nanometer Technology ExampleNanometer Technology Example
Convergence problems between synthesis & layout

Row-based
Layout

Logic
Synthesis

Design spec

Gate network designed
without real knowledge
of wire delays.

After layout, timing is
violated due to wiring.

∆=7

∆=12...oops!

Failure--
Now what?

Go back to synthesis?
Redo layout with same
netlist? Perturb both

logic and layout?

Page 16

© R. Rutenbar 2001 Fall 18-760 Page 31

Now What?Now What?
On to Boolean algebra...

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

