
CMU Fall’01 18-760 VLSI CAD September 20, 2001 1

CMU Fall’01 18-760 VLSI CAD

[120 pts]  (V2)   Homework 2. Out Thu Sep 13,  Due Thu Sep 27 ‘01.

1. BDD ordering [10 pts]

We saw that variable order is highly significant for something as simple as a multiplexor. 
How about something like a comparator?  A simple comparator takes two 2-bit unsigned 
binary numbers a1a0 and b1b0 and compares their magnitude, and sets the output z=1 just 
if a1a0 is less than or equal to b1b0.   Do this:

• Is there a particularly good variable ordering for this function?  Show it--show the 
BDD.  Is there a particularly bad variable ordering for this function?  Show it--show 
the BDD.

• Draw a gate-level netlist using any AND, OR, NOT, EXOR gates you want, to imple-
ment the simple comparator from the previous problem.  Apply Minato’s ordering heu-
ristic (and where you need to break ties or make any arbitrary ordering decicion--just 
tell us what you did and show the work). Show what variable ordering it produces.

2. ITE for Gates [10 pts]

What is the fewest number of calls you need to make to ITE to implement a ⊕ b ?   In 
other words, you don’t want to use ITE several  times to build AND, OR, and NOT, to do 
a’b + ab’  —that’s too easy.  You can do it much more simply if you think about it  Draw 
the multiplexor-hardware picture of the ITE and label clearly what’s going in and out of 
each ITE.

3.  ITE Decomposition [10 pts]

Using what you know of Boolean algebra, the definition of ITE,  and the properties of 
cofactors, show that the  ITE decomposition below (from class) actually works:

(EQ 1)

4. ITE Recursion [10 pts]

Let f(x, y) = x• y   and   g(x, y) = x ⊕ y (this is exclusive-nor).  Assume we have a multi-rooted 
DAG for the BDDs representing these two functions (you need to draw them.)  We want to 
EXOR these functions, and compute a new function Q(x, y) = (f ⊕g)(x,y).  Using the ITE oper-
ator as discussed in the notes, show how you would implement this EXOR operation.  As in the 
slides, show how the recursive computation proceeds as ITE calls itself.  At each node of the 
recursive call tree, tell what ITE is computing (label the nodes in your BDD in some sensible 
way) and show clearly when each recursive call terminates.  Draw the final recursive call tree.  

ITE I T E,,( ) x ITE Ix Tx Ex,,( )• x ITE Ix Tx Ex,,( )•+=



CMU Fall’01 18-760 VLSI CAD September 20, 2001 2

Draw the final result, i.e., show the final form of the multi-rooted DAG that now represents 
functions f, g, and Q.

5. Derived Operators [20 pts]

Suppose we have a  software package that has data structures representing variables and 
Boolean functions as BDDs, and that the following operations are available as subroutines 
in this software.  (We will write these in a simplified sort of C language notation):

bdd var2func(var  x) Generate the BDD corresponding to a single variable x.
Input is a single variable (of type var),  and
the returned output is a BDD.

bdd ITE(bdd  I,  bdd T,  bdd E )
Compute the if-then-else operation.  Inputs are 3 BDDs,
called I (if part), T (then part) E (else part), 
and the returned output is another BDD.

int iszero(bdd func ) Returns integer 1 just if func  is the always-zero function. 
Input is a BDD, output is integer 1 or 0 (it’s not a BDD)

bdd cofactor(bdd func, var x , int val)
Computes cofactor of func with respect to var x, setting
x = val.  func is a BDD, var is a variable, 
val is integer  0 or 1

bdd AND(bdd  f,  bdd g)
bdd OR(bdd  f,  bdd g)
bdd EXOR(bdd  f,  bdd g)
bdd NOT(bdd  f)

Compute the basic logical (gate type) operations
on BDDs.  AND, OR and EXOR create new BDDs 
representing  the logical AND, OR and exclusive-or
of their inputs.   NOT creates the BDD for the complement
of its input.

bdd CONST1, CONST0
You can assume these two BDDs are already defined.
These are just the constant 1 function and the
constant 0 function.  Note that iszero(CONST0) == (int) 1.

No other operations are implemented, and there is no way for you to examine the BDD 
data structure directly.

Describe (in C-like pseudo-code notation–we don’t need real code here!) how you would 
implement the following operations:



CMU Fall’01 18-760 VLSI CAD September 20, 2001 3

• int depends(bdd f, var x) Determine whether function f depends on the
specified variable x.  This means  if you change x,
at least sometime the output of f will also change.
f is a BDD, x is a variable, depends returns integer 0 or 1.

• bdd univquant(bdd f, var x)
Compute universal  quantification of function f with respect 
to  variable x.  f is a BDD, x is a variable, univquant
returns a BDD.

• int opposite(bdd f, bdd g) Determine whether two functions are complementary,
i.e., if one of them is the complement of the other.
f and g are BDDs,  opposite returns integer 0 or 1.

• bdd exchange(bdd f, var a, var b )
Exchange roles of specified variables in function f.  
For example, exchange(a•b + d, a, d ) ––> d•b + a.
f is a BDD, a and b  are variables, exchange returns a BDD.

• bdd compose(bdd f, bdd g, var x)
Creates a new function (composition function) with variable 
x in f set to the output of g.  The picture below clarifies
what we are computing.  f and g are BDDs, x is a 
variable, and compose returns a BDD.

HINTS:   lots of things that look difficult are easier when you cofactor them and look at 
the cofactors.  Play around with ITE of various combinations of the cofactors. The first 3 
operators are pretty straightforward, the last 2 are rather tricky.  None of these things 
requires some sophisticated recursive algorithm, just a few lines of calls to the right oper-
ators with the right inputs.  To emphasize this, here is the answer for the first part, for  
depends(bdd f, var x):

int depends(bdd f, var x) {
     return(1 - iszero(  EXOR( cofactor(f, x, 0), cofactor(f, x, 1) )   );

} 

a
b
c
d

f(a,b,c,d)

a
b
c
d

g(a,b,c,d)

a
b

d

compose(f,g,c)a
b
c
d

f

g

g f



CMU Fall’01 18-760 VLSI CAD September 20, 2001 4

Notice how this works.  If function f( ) depends on variable x, then if I change x from x=0 
to x=1, there ought to be at least some pattern for the remaining inputs that makes the out-
put of the function change.  But this is exactly what the Boolean Difference tries to com-
pute.  So,  we compute the BDD for a new function  f( ... x=0 ...) ⊕ f( ... x=1 ...)  using 
calls to cofactor and to EXOR.  What does this new function tell us?  If the new function 
is zero always, for all inputs, then you cannot affect the output of function f by changing 
variable x.  In other words, f does not depend on variable x.  So if the iszero( ) function 
returns integer 1, it means the original f function does not depend on x.  To get the  true/
false return for depends() correct, we have to invert this, which is what the (1 - ...) does.  

6. Combinational Verification in KBDD  [30 pts]

kbdd is a BDD calculator done by Prof. Randy Bryant’s research group that has all the 
operators you’d want to use to manipulate Boolean functions, and a simple command line 
interface to type in functions, etc.  You will use this to try to verify the correctness of a 
logic gate network whose BDDs are much  too big to do by hand.  

kbdd lives in /afs/ece/class/ee760/bin/kbdd, and it works on IBM AIX boxes and on SUN 
Solaris boxes.

As a starting point, the following page shows  a complete trace of a session with kbdd, 
using it to do the network repair problem on the last homework assignment. Inputs are in 
normal font, outputs italics,  kbdd’s prompts for input shown in bold as KBDD:



CMU Fall’01 18-760 VLSI CAD September 20, 2001 5

%  /afs/ece/class/ee760/bin/kbdd

KBDD: # input variables

KBDD: boolean a b cin d0 d1 d2 d3

KBDD: #

KBDD: # define the correct equation for the adder’s carry out

KBDD: eval cout a&b + (a+b)&cin

cout: a&b + (a+b)&cin 

KBDD: #

KBDD: # define the incorrect version of this equation (just for fun)

KBDD: eval wrong a&b + (!(a&b))&cin

wrong: a&b + (!(a&b))&cin 

KBDD: #

KBDD: # define the to-be-repaired version with the MUX

KBDD: eval repair a&b + (d0&!a&!b + d1&!a&b + d2&a&!b + d3&a&b)&cin

repair: a&b + (d0&!a&!b + d1&!a&b + d2&a&!b + d3&a&b)&cin 

KBDD: #

KBDD: # make the Z function that compares the right version of

KBDD: # the network and the version with the MUX replacing the

KBDD: # suspect gate  (this is EXNOR of cout and repair functions)

KBDD: eval Z repair&cout + !repair&!cout

Z: repair&cout + !repair&!cout 

KBDD: # universally quantify away the non-mux vars: a b cin

KBDD: quantify u ForallZ  Z a b cin

KBDD: #

KBDD: # let’s ask kbdd to show an equation for this quantified function

KBDD: sop ForallZ

  !d0 & d1 & d2

KBDD: #

KBDD: # what values of the d’s make this function == 1?

KBDD: satisfy ForallZ

Variables: d0 d1 d2

011

KBDD: #

KBDD: # that’s it!

KBDD: quit

%



CMU Fall’01 18-760 VLSI CAD September 20, 2001 6

KBDD Quick Reference

boolean  var   … Declare variables and variable ordering
Extended naming
var[m .. n ] Numeric range (ascending or descending)
{s1,s2,…} Enumeration

evaluate dest  expr dest := bdd for boolean expression expr
Operations   (decreasing precedence)
! Complement
^ Exclusive-Or
& And
+ Or

bdd funct Print  BDD DAG as lisp-like representation
sop funct Print sum-of-products representation of funct
satisfy funct Print all satisfying variable assignments of funct
verify f1 f2 Verify that two functions f1 f2 are equivalent
size funct  … Compute total BDD nodes for set of functions
replace dest funct var replace Functional composition: dest := funct with

 variable var replaced by replace function output
quantify [u|e] dest funct var … dest := Quantification of  function funct over 

variables var ...
e Existential quantification is done
u Universal quantification is done

adder n Cout Sums As Bs Cin Compute functions for n -bit adder
n Word size
Cout Carry output
Sums Destinations for sum outputs: Sum.n … Sum.0
As A inputs: A.n-1 … A.2  A.1 A.0
Bs B inputs: B.n-1 … B.2  B.1  B.0
Cin Carry input

alu181 Cout Fs M Ss Cin As Bs Compute functions for ‘181 TTL  ALU
Cout Destination for carry output
Fs Destinations for function outputs: F.3 F.2 F.1 F.0 
M Mode input

 Ss Operation inputs: S.3  S.2  S.1  S.0
Cin Carry input function
As A inputs: A.3  A.2  A.1 A.0
Bs B inputs: B.3  B.2  B.1  B.0

mux n Out Sels Ins Compute functions for 2n-bit multiplexor
n Word size
Out Destination for output function
Sels Control inputs: Sel.n-1 …  Sel.1  Sel.0
Ins Data inputs: In.2n – 1 …  In.1  In.0

quit Exit KBDD



CMU Fall’01 18-760 VLSI CAD September 20, 2001 7

So, what shall we use kbdd to verify?  It turns out that adders are a very good choice here, 
because they come in so many different styles, and we know that the BDD for a basic 
adder is very simple and small.  Look at the appendix to this assignment for a description 
of a very interesting industrial-strength adder, from Grant McFarland’s webpage at Stan-
ford (http://umunhum.stanford.edu/~farland/notes.html). This adder has these features:

• 32-bit carry lookahead structure (CLA)

• Faster carry propagation through the use a so-called Ling adder structure

• Conditional carry propagation using a carry select multiplexor

This is a pretty scary looking adder-- but these are the kinds of tricks people really play to 
implement very fast adders for things like microprocessors. And, this is exactly what a 
“real world” industrial design description looks like.  

Question:  Does this thing really work?  The description in the appendix is pretty detailed--but, 
hey, mistakes happen. To check this, but to keep the complexity down, we want you to verify 2 
outputs from this complicated adder:  the final carry out cout and the most significant bit of the 
sum s31.  You don’t need to verify any of the other bits.

This means, we want you to build the BDDs for all these two functions of the input bits (a0 - 
a31, b0 - b31) and compare them  to an “ordinary” adder.  Are they identically the same Bool-
ean functions?  Use kbdd to formally verify these 2 parts of this aggressive, custom 32-bit 
design.  Include a listing of your session with kbdd showing how you did this.  Note especially 
that kbdd has basic n-bit adders built in, so to create the “baseline” sum-bit equations is a sim-
ple operation. For example, to do a basic 4-bit adder, this will suffice:
kbdd:  boolean a[3..0] b[3..0] s[3..0] cout cin

kbdd:  adder 4 cout s[3..0] a[3..0] b[3..0] cin

All the work is in creating the description adder in kbdd, and then comparing it appropriately.

Note: It’s probably easiest to edit a script file that you then run through kbdd using the 
source kbdd command.  In UNIX, if you type the following italics stuff:
% script

% /afs/ece/class/ee760/bin/kbdd

kbdd:  source  myfilename

kbdd: quit

<you hit control-D>

then it will (1) start saving everything in a file called typescript, (2) run kbdd, (3) tell kbdd 
to run your commands in your file myfilename.   You type control-D to stop the script sav-
ing.  You can then print this typescript file and hand it in, and include some comments so 
when we read it, we understand what you did.



CMU Fall’01 18-760 VLSI CAD September 20, 2001 8

7. Multi-Terminal BDDs [10 pts]

BDDs come in a number of specialized variants, one of which is the Multi-Terminal BDD, 
or MTBDD.

MTBDDs are a generalization of BDDs that allow an arbitrary number of real-valued ter-
minals instead of just the basic binary terminals, 0 and 1. While a BDD represents func-
tion that returns a Boolean value for any assignment to its variables, an MTBDD returns a 
real number.  More formally:

BDDs          F : Bn -> B

MTBDDs    F : Bn -> R

Suppose you wanted to represent the following function:

 F(a,b)  = 1.2   for a=1, b=0 
  F(a,b) = 2.5    for a=0

F(a,b) = 4.7   for a=1, b=1

These numbers could have any number of meanings. One example would be the power in 
mW consumed by a particular circuit when it’s input changes from “a” to “b”. Or it could 
be the delay in ns, or the rise time of the output. The MTBDD for this function would be 
the following:

Furthermore, MTBDDs can be used to represent real-valued matrices fairly efficiently.   
To do so, we introduce log(# rows) + log(# columns) variables to encode the row position, 
and  column position. For a simple 2 by 2 matrix, we get the following:

2.5 4.7 1.2

a

b

F

1.5    2.5
2.5    1.2

1.2 2.5 1.5

col

row row



CMU Fall’01 18-760 VLSI CAD September 20, 2001 9

For very large matrices with lots of repeated numbers, the MTBDD representation can be 
considerably smaller than a simple listing of the values, and operations like matrix-addi-
tion or matrix-multiplication are correspondingly faster.

It turns out that working with MTBDDs is just as easy as with BDDs.  To apply an arbi-
trary binary operator (function with two operands, like “a+b”), we can use the same 
expansion and cofactoring rules as with BDDs. The cofactor of a function F with respect 
to variable x, or Fx, is obtained by redrawing the MTBDD without all of the “x” nodes, 
and redirecting their incoming edges to the “hi” son. For example:

Using cofactors, we can decompose operations on MTBDDs in exactly the same manner 
as for BDDs:

F = x Fx + x’Fx’   

F+G = x ( Fx + Gx) + x’ (Fx’ + Gx’)

F*G = x ( Fx * Gx) + x’ (Fx’ * Gx’)

This results in a nice recursive algorithm for performing arbitrary operations on two input 
MTBDDs that looks remarkably similar to algorithms for BDDs.

Do this:

1.)   Draw the MTBDDs for the two following functions:

F(a,b) = 3   for a=0
0   for a=1,b=0
4   for a=1,b=1

G(a,b) = 0   for b=1
4   for b=0

2.)  Compute and draw the resulting MTBDDs for H=F+G and M=F*G

(Hint: This will be easier if you think about what the results should be for each of the 
assignments to a and b first, and then try drawing the MTBDD. )

0.4 1.1

a

 b
cofactor
w.r.t. “b”

0.4 1.1

a



CMU Fall’01 18-760 VLSI CAD September 20, 2001 10

8. Metaproducts [20 pts]

A wonderful property of BDDs is that they only represent the “abstract” Boolean function, 
not the way you chose to implement it with logic gates.  This is why BDDs are so useful 
for verification:  you can implement x + x’ , or x + y + x’y’, or just plain “1”, and in all 
these cases, you get the identical BDD.

Of course, sometimes we actually want to represent the way we have implemented some-
thing as logic gates.  Suppose we really want to represent--for whatever odd reason--the 
SOP expression = x + x’.  Is there any way we can represent this directly, without immedi-
ately resolving it to the “1” function?  In other words, can we preserve the SOP product 
structure of this expression?  The answer is “yes” -- sort of.

We need a new representation of the function that “records” the SOP structure, but which 
also behaves as much like a BDD as possible.  It turns out there is a very elegant trick for 
recasting the original function in a new set of variables, and then just representing this new 
function as a BDD, that does much of what we want it to do.  This new “SOP preserving” 
structure is called metaproduct notation. (The idea is due to Olivier Coudert, originally 
of Bull Research Center in France.) Here’s the trick:

• For each variable x in your SOP form, the metaproduct formula has 2 different vari-
ables: rx and sx. rx is  the occurence variable for x;  sx is the sign variable for x.

• Suppose your function is f(x,y,z,w). For each product term in your SOP form, for 
example xy’z’, you get a corresponding metaproduct term. 
If your literal is in positive form, like x, you get  (rxsx ) in the metaproduct. 
If your literal is in negative form, like x’, you get  (rxsx’ ) in the metaproduct.   
If  a variable is missing from the product, like w, you get (rw’)  in the metaproduct.
(It turns out the sw  variable doesn’t matter in this case, since w is not present, sign 
doesn’t matter)

• So, xy’z’ would get transformed into ( rxsxrysy’rzsz’rw’ ) in  metaproduct form.

Read  rx =1  as meaning “the variable x occurs in the product.”   Read  rx =0  as meaning 
“the variable x does not occur in the product.” Similarly, read sx =0 as “the polarity of x is 
positive” and   sx =1 as “the polarity of x is negative”.  For example: 

So, for example, if we actually tried to represent f(x)=(x + x’) we would get ( rx sx  + rxsx’) 
for the metaproduct form. To manipulate this, we represent it as a BDD.  we get one more 
rule here:

rx sx  ry sy’  rzsz’  rw’ 

xy’z’ w is absent in
this product term



CMU Fall’01 18-760 VLSI CAD September 20, 2001 11

• Interpret the paths from the BDD root to the “1” leaf as specifying the individual prod-
uct terms in the metaproduct form.  If a variable is omitted on a path, you need to 
include it in both polarities in the final metaproduct.

This sounds more complicated than it really is.  Let’s try it.  Do this:

• Draw the BDD for the metaproduct for the single-variable function f(x)=x+x’.  Show 
how walking the paths from root to “1” leaf generates the correct metaproduct for this 
SOP form.

• Using what you know about BDDs, complement this BDD for this metaproduct.  
Again, walk the paths from root to “1” and generate the new metaproduct for f’(x). 
Interpret the result -- does this makes sense?  Why?

• Draw the BDD for the metaproduct of the 4 variable function: 
                              f(x,y,z,w) = yw’ + xzw’ + xy’zw’
Again, show how the paths from root to leaf in this BDD generate the correct metap-
roduct.  (It’s OK to use kbdd for this one, as long as you can figure out the BDD struc-
ture yourself.)

• Again, complement this BDD, and show that the result makes sense as a metaproduct. 
(For this one, you might want to use kbdd -- if it’s too messy to do by hand.)



CLA and Ling Adders

� Introduction

One of the most popular designs for fast integer adders are Carry�Look�Ahead adders� Rather than
waiting for carry signals to ripple from the least signi�cant bit to the most signi�cant bit� CLA
adders divided the inputs into groups of r bits and implement the logic equations to determine if
each group will generate or propagate a carry� By combining the generate and propagate signals of
r groups at with each successive stage of logic� a CLA adder can derive the carrys into each bit in
order logr n gates instead of order n for a ripple carry adder� This paper discusses the design of a
very simple �� bit CLA adder� some improvements that can be made to that adder� and a variation
of CLA adders known as Ling adders�

� A Simple CLA Adder

An overview of the adder�s � stages is shown in �gure 	 with stage 	 and the top and stage � at
the bottom� In stage 	 the local generate and propagate signals for each bit are created� In stage
� these signals are combined to create generate and propagate signals out of each group of � bits�
In stage � the group signals are combined into 
 bit block signals� In stage � the carry into each
block is calculated and these signals begin traveling back up the adder tree� In stage � the carry
into each group is created� and in stage � the carry into each bit is created� Finally� stage 	 uses
the local carry signals to calculate the �nal sum bits�

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Group 10 Group 9 Group 8 Group 7 Group 6 Group 5 Group 4 Group 3 Group 2 Group 1 Group 0

Block 3 Block 2 Block 1 Block 0

CB2 CB1

Cout CB3

GB2 PB2 GB1 PB1 GB0GB3 PB3

CG8 CG7 CG6

GG8
PG8

GG7
PG7

GG6
PG6

CG9CG10

GG9
PG9

GG10
PG10

CG5 CG4 CG3

GG5
PG5

GG4
PG4

GG3
PG3

CG2 CG1

GG2
PG2

GG1
PG1

GG0

CIN

Figure 	� CLA Adder

	

rutenbar
From Grant McFarland's Stanford Web Page: http://umunhum.stanford.edu/~farland/notes.html



��� Generate and Propagate Signals

In the �rst stage of logic the adder must calculate the local generate and propagate signals �gi
and pi
 which tell if each bit will generate a carry into the next bit or propagate a carry from the
previous bit�

gi � aibi �	


pi � ai � bi ��


In stage � these signals are then combined into group generates and propagates �GGi and PGi
 for
each of the ten groups as follows�

GG� � g� � p��g� � p�cIN 
 ��


GG� � g� � p��g� � p�g�
 ��

���

GG�� � g�� � p���g�� � p��g��
 ��


PG� � p�p�p� ��


PG� � p�p�p	 ��

���

PG�� � p��p��p�� ��


where cIN is the carry in signal to the least signi�cant bit� Since cIN is included in GG�� no group
propagate signal from group � is needed� The group propagate signals are formed with a simple �
input AND gate� The group generate signals are formed with the fanin�� generate gate shown in
�gure �� In stage � these signals are used to create the block generate and propagate signals �GBi

and PBi
�

GB� � GG� � PG��GG� � PG�GG�
 �



GB� � GG	 � PG	�GG� � PG�GG�
 �	�


GB� � GG
 � PG
�GG� � PG�GG�
 �		


GB� � GG�� � PG��GG� �	�


PB� � PG	PG�PG� �	�


PB� � PG
PG�PG� �	�


PB� � PG��PG� �	�


All the blocks can use the same fanin�� generate gate and � input AND gate used in the previous
stage except for block � which contains only two groups� Its propagate signal requires only a �
input OR� and its generate is create using a fanin�� generate gate shown in �gure �� Having created
the block generate and propagate signals� the adder begins to �nally create the true carry signals�

�



g4

g4

p4

p4

GG1

g3

g3 p3

p3 g2

g2

Figure �� FanIn�� Generate Gate

g0

p1g1

g1

p1 g0

GG0

Figure �� FanIn�� Generate Gate

�



��� Carry Signals

In stage � the block generate and propagate signals are used to create the carry signals into each
block �CBi
�

CB� � GB� �	�


CB� � GB� � PB�GB� �	�


CB� � GB� � PB��GB� � PB�GB�
 �	�


COUT � GB� � PB�CB� �	



where COUT is the over�ow carry out of the entire adder� These signals then begin to travel back
up the adder stages� �rst forming the carry into each group �CGi
 in stage �� For block � these
equations are as follows�

CG� � CB� ���


CG� � GG� � PG�CB� ��	


CG
 � GG� � PG��GG� � PG�CB�
 ���


In stage � these group carry signals are used to form the local carry into each bit �ci
� For group
� these equations are as follows�

c�� � CG
 ���


c�� � g�� � p��CG
 ���


c�	 � g�� � p���g�� � p��CG

 ���


All of these signals can be created using the fanin�� and fanin�� generate gates shown in �gures �
and �� This means each center group and block will use one fanin�� gate and one OR gate to create
generate and propagate signals for the stage below� and one fanin�� gate and one fanin�� gate to
create carry signals for the stage above� The wiring of these groups and blocks is shown in �gure
� for group 	� hen the local carry signals reach stage 	� they are used to create the �nal sum bits
�si
 according to the equations�

ti � ai � bi ���


si � ti � ci ���


��� Critical Path

The worst case inputs for this adder are when ai � bi � 	 for all the input bits and then cIN is
toggled� The local generate signals require � series transistors to form� For an N bit CLA adder
combining r groups at each level� the generate signals must travel up dlogrNe � 	 levels of r � 	
series transistors each� Then the signal travels down dlogrNe � � levels of no more than r � 	

�



Gate IGate IIGate II

p2g2p3g3p4g4

CG1

c2c3c4

GG1 PG1

Figure �� Group 	

series transistors� Final� the XOR to form the local sums takes � series transistors� Therefore� the
maximum number of series transistors in the critical path can be written as�

Td � � � �dlogrNe � 	
�r� 	
 � �dlogrNe � �
�r� 	
 � � ���


Td � �� dlogrNe � �
�r� 	
 � � ��



For a �� bit adder with r � � as described in this paper this equation gives a maximum of ��
transistors� The true critical path is �� transistors since block � contains only � groups instead of
�� The critical path is shown in table 	� Although faster designs are possible� this adder has the

Operation Signal Delay Total

Local Generate gi � �

Group Generate GGi � �

Block Generate GBi � 		

Block Carry CB� � 	�

Group Carry GG�� � 	�

Local Carry c�� � ��

Local Sum s�� � ��

Table 	� Simple CLA Critical Path

advantage of a relatively simple layout and wiring� The next section discusses changes which can

�



be made in this design to improve performance�

� An Improved CLA Adder

The critical path delay of the simple CLA adder design presented in the previous section can be
reduced signi�cantly at the price of making the layout and wiring more complex�

��� Single Stage Group Generate

The �rst improvement to be made is using a single complex gate to create the group generate
and propagate signals in a single stage directly from the adder inputs� In the simple design the
expression used for the group 	 generate signal was as follows�

GG� � g� � p��g� � p�g�
 ���


Expanding this in terms of the adder inputs gives�

GG� � a�b� � �a� � b�
�a�b� � �a� � b�
a�b�� ��	


This equation can be implemented by an NMOS network containing � series transistors followed by
an inverter� The PMOS network must implement the complement of this function� which normally
would also require � series transistors� However� the relation gi pi � pi can be used to simply the
expression for GG� as follows�

GG� � g��p� � g��p� � g�
� ���


GG� � p� � g��p� � g� g�
� ���


GG� � a�b� � �a� � b�
�a�b� � �a� � b�
�a� � b�
� ���


This simpli�ed expression can be implemented by a PMOS network with � series transistors followed
by an inverter� The gate implementing the group generate for group 	 is shown in �gure �� The
gate implementing the group propagate is shown in �gure �� This change reduces the total number
of series transistors used in forming the group generate signals from � to ��

��� Carry Select Mux

The second improvement eliminates the need to travel back up the adder tree after the block carrys
have been formed� This is done by generating two sets of sum bits� One set assumes the carry into
each block will be �� and the other set assumes it will be 	� This can occur in parallel with the
generation of the block carrys which are then used to control a mux which selects the proper set of
sum bits� This is the same method used in carry select adders�

�



a4

b4 a3

a4 b4

b3

a2

b2

a3 b3

a4

b4

a4 b4

a3

b3

a3 b3

a2 b2

GG1

Figure �� CLA Group Generate

a2

a3

a4

b2

b3

b4

a4

b4

a3

b3

a2

b2

PG1

Figure �� CLA Group Propagate

�



In the simple CLA adder the equations implemented by group carry� local carry� and �nal sum
stages for bit �� are as follows�

s�� � t�� � c�� ���


s�� � t�� � CG
 ���


s�� � t�� � �GG� � PG��GG� � PG�CB�
� ���


This expression is converted to a mux controlled by CB� by de�ning the signals CGF
 and CGT
�

CGF
 � GG� � PG�GG� ���


CGT
 � GG� � PG��GG� � PG�
 ��



The signal CGF
 is the carry into group � assuming the block carry is zero� and CGT
 assumes
the block carry is one� The �nal sum bit is then written as�

s�� � CB��CGF
 � t��� � CB��CGT
� t��� ���


Using these signals� the other sum bits of the group are written in similar fashion�

s�� � CB���g��� p��CGF

� t��� � CB���g�� � p��CGT

� t��� ��	


s�	 � CB���g��� p���g�� � p��CGF


� t��� � CB���g��� p���g�� � p��CGT


� t��� ���


Because the signals CGF
 and CGT
 will appear after the local generate and propagate signals�
the critical path delay can be further reduced by applying the same principal to make the inputs
to the mux controlled by the block carry muxes controlled by CGF
 and CGT
� This also allows
the simpli�cation of gi � pi � pi to be applied�

s�� � CB��CGF
t�� � CGF
t��� �

CB��CGT
t�� � CGT
t��� ���


s�� � CB��CGF
�g��� t��
 � CGF
�p�� � t��
� �

CB��CGT
�g�� � t��
 � CGT
�p�� � t��
� ���


s�	 � CB�fCGF
��g��� p��g��
� t�	� � CGF
��g��� p��p��
� t�	�g �

CB�fCGT
��g�� � p��g��
� t�	� � CGT
��g�� � p��p�� � t�	�g ���


The � bit slice which implements these functions is shown for group � in �gure �� sing the bit slice
eliminates the need to go back up the adder tree after forming the block carrys� and reduces the
critical path after the block carrys to a single mux delay�

Because of the reduced delay from the formation of the block carrys to the �nal sum output� COUT

can no longer be implemented as a function of CB� as shown in equation 	
 without becoming the
critical path� To avoid this a fanin�� generate gate is used to form COUT directly from the block
generates and propagates�

COUT � GB� � PB��GB� � PB��GB� � PB�GB�
� ���


This gate is shown in �gure � and removes COUT from the critical path�

�



S23S24S25

CB2

p23p24g24 g23

CGT8

CGF8

t25 t24 t23

Figure �� Sum Selection Slice

GB0

PB1GB1

PB2GB2

PB3GB3

Cout

GB0 PB1

GB1PB2

GB2PB3

GB3

Figure �� FanIn�� Generate Gate






��� Critical Path

With a single stage group generate the critical path must still pass up dlogrNe � 	 levels� Of
these the �rst level will contain r � � series transistors and the others r � 	� The carry select
mux eliminates the need to travel back up the levels of the adder to form the local carries� The
mux delay from the arrival of the control signal is counted as one series transistor to form the
complement of the control signal and one transistor to pass the input to the output� The number
of series transistors in the critical path is therefore�

Td � �dlogrNe � 	
�r� 	
 � � ���


For the �� bit adder shown here with r � � this gives 	� series transistors� Using the single stage
group generate eliminates � series transistors� and the carry select mux reduces the delay from the
formation of the block carries from 
 series transistors to �� The total critical path is reduced by 

series transistors from a total of �� to 	�� The new critical path is shown in table ��

Operation Signal Delay Total

Group Generate GGi � �

Block Generate GB� � 


Block Carry CB� � 	�

Result Mux s�� � 	�

Table �� Improved CLA Critical Path

� A Ling Adder

One �nal improvement that can be made to CLA design is the use of a pseudo�carry as proposed
by Ling�	� ��� This method allows a single local propagate signal to be removed from the critical
path� To show how this is done the group generate signal for group 	 is shown below�

GG� � g� � p�g� � p�p�g� ���


Ling observed that each term in GG� contains p� except for the very �rst term which is simply g��
However� p� can still be factored out of this expression by noting that gi � pigi�

GG� � p�GG
�

�
��



GG�

� � g� � g� � p�p� ���


The Ling group generate signal �GG�

�

 is simpler and can be calculated more quickly than the CLA

group generate signal� When expanded out the CLA and Ling group generates are as follows�

GG� � a�b� � �a� � b�
�a�b� � �a� � b�
a�b�� ��	


GG�

� � a�b� � a�b� � �a� � b�
a�b� ���


	�



The gate used to implement the group generate signal is shown in �gure 
 and has one less series
transistor than the equivalent CLA gate shown in �gure �� he Ling group propagate signals �PG�

i



a4

b4

a3

b3

a2

b2

a3 b3

a4 b4

a3

b3

a3 b3

a2 b2

GG1

Figure 
� Ling Group Generate

are formed using the same gates as in the CLA design� but they are shifted one bit to the right�
The CLA and Ling group propagate signals for group one are shown below�

PG� � p�p�p� ���


PG�

� � p�p�p� ���


These Ling group generate and propagate signals are then combined in the same manner as before
to create block carry signals�

CB�

�
� GB�

�
���


CB�

� � GB�

� � PB�

�GB
�

� ���


CB�

� � GB�

� � PB�

��GB
�

� � PB�

�GB
�

�
 ���


C�

OUT � GB�

� � PB�

� �GB
�

� � PB�

��GB
�

� � PB�

�GB
�

�
� ���


The true COUT is simply p��C�

OUT
which could be formed with a simple AND gate� but this would

make it the critical path� Instead� the �nal group generate signal �GG��
 is formed using the CLA
expression rather than the Ling group generate� Also the �nal group propagate �PG�

��

 is formed

with a � input AND instead of a � input AND to include p��� These changes allow the true COUT

to be formed from the block generate and propagate signals as shown above without making it the
critical path�

		



The �nal change that must be implemented to complete the Ling adder is to insert into the sum
logic the local propagate signal which was factored out of each group generate� This is done simply
by ANDing the CGF �

i
and CGT �

i
signals formed from the Ling group generate and propagates

with the local propagate signal of the most signi�cant bit of the previous group� This change is
shown in �gure 	� which depicts the sum selection logic for group � of the Ling adder�

��� Critical Path

The only di�erence in the critical path of the improved CLA and the Ling adder is the use of the
Ling group generate is the �rst stage as shown in table �� This allows the group generate signals
to be formed in r� 	 series transistors instead of r� �� The changes in the sum selection logic are
o� the critical path and have no e�ect on the total delay� Therefore� the series transistors in the
critical path can be written as�

Td � �dlogrNe � 	
�r� 	
 � � ��



For a �� bit adder with r � � the net improvement of a Ling adder over the improved CLA adder
is a total delay of 	� series transistors instead of 	��

Operation Signal Delay Total

Group Generate GGi � �

Block Generate GB� � �

Block Carry CB� � 	�

Result Mux s�� � 	�

Table �� Ling Critical Path

	�



S23S24S25

p23p24g24 g23t25 t24 t23 p22

CGT*8

CGF*8

CB*2

Figure 	�� Ling Sum Selection Slice

	�



References

�	� H� Ling� High speed binary parallel adder� IEEE Transactions on Computers� EC�	���
��

�
���� October 	
���

��� H� Ling� High speed binary adder� IBM Journal of Research and Developement� ����
�	���	���
May 	
�	�

��� R� Brent and H� Kung� A regular layout for parallel adders� IEEE Transactions on Computers�
C��	��
��������� March 	
���

��� G� Bewick� P� Song� G� DeMicheli� and M� Flynn� Approaching a nanosecond� A ���bit adder�
In Proceedings of the International Conference on Computer Design� pages ��	����� 	
���

��� I� Hwang and A� Fisher� A ��	ns ��b CMOS adder in multiple output domino logic� In
International Solid State Circuits Conference� pages 	���	�	� 	
���

��� A� Omondi� Computer Arithmetic Systems� Algorithms� Architecture and Implementations�
Prentice Hall� 	

��

��� N� Quach and M� Flynn� High�speed addition in CMOS� Technical Report CSL�TR�
���	��
Stanford University� February 	

��

��� S� Waser and M� Flynn� Introduction to Arithmetic for Digital Systems Designers� Holts�
Rinehart and Winston� 	
���

	�


	From Grant McFarland's Stanford Web Page: http://umunhum: 
	stanford: 
	edu/~farland/notes: 
	html: 





