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CMU Fall’01 18-760 VLSI CAD

[120 pts]     Homework 2. Out Thu Sep 13,  Due Thu Sep 27 ‘01.

1. BDD ordering [10 pts]

We saw that variable order is highly significant for something as simple as a multiplexor. 
How about something like a comparator?  A simple comparator takes two 2-bit unsigned 
binary numbers a1a0 and b1b0 and compares their magnitude, and sets the output z=1 just 
if a1a0 is less than or equal to b1b0.   Do this:

• Is there a particularly good variable ordering for this function?  Show it--show the 
BDD.  Is there a particularly bad variable ordering for this function?  Show it--show 
the BDD.

• Draw a gate-level netlist using any AND, OR, NOT, EXOR gates you want, to imple-
ment the simple comparator from the previous problem.  Apply Minato’s ordering heu-
ristic (and where you need to break ties or make any arbitrary ordering decicion--just 
tell us what you did and show the work). Show what variable ordering it produces.

2. ITE for Gates [10 pts]

What is the fewest number of calls you need to make to ITE to implement a ⊕ b ?   In 
other words, you don’t want to use ITE several  times to build AND, OR, and NOT, to do 
a’b + ab’  —that’s too easy.  You can do it much more simply if you think about it  Draw 
the multiplexor-hardware picture of the ITE and label clearly what’s going in and out of 
each ITE.

3.  ITE Decomposition [10 pts]

Using what you know of Boolean algebra, the definition of ITE,  and the properties of 
cofactors, show that the  ITE decomposition below (from class) actually works:

(EQ 1)

4. ITE Recursion [10 pts]

Let f(x, y) = x• y   and   g(x, y) = x ⊕ y (this is exclusive-nor).  Assume we have a multi-rooted 
DAG for the BDDs representing these two functions (you need to draw them.)  We want to 
EXOR these functions, and compute a new function Q(x, y) = (f ⊕g)(x,y).  Using the ITE oper-
ator as discussed in the notes, show how you would implement this EXOR operation.  As in the 
slides, show how the recursive computation proceeds as ITE calls itself.  At each node of the 
recursive call tree, tell what ITE is computing (label the nodes in your BDD in some sensible 
way) and show clearly when each recursive call terminates.  Draw the final recursive call tree.  

ITE I T E,,( ) x ITE Ix Tx Ex,,( )• x ITE Ix Tx Ex,,( )•+=
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Draw the final result, i.e., show the final form of the multi-rooted DAG that now represents 
functions f, g, and Q.

5. Derived Operators [20 pts]

Suppose we have a  software package that has data structures representing variables and 
Boolean functions as BDDs, and that the following operations are available as subroutines 
in this software.  (We will write these in a simplified sort of C language notation):

bdd var2func(var  x) Generate the BDD corresponding to a single variable x.
Input is a single variable (of type var),  and
the returned output is a BDD.

bdd ITE(bdd  I,  bdd T,  bdd E )
Compute the if-then-else operation.  Inputs are 3 BDDs,
called I (if part), T (then part) E (else part), 
and the returned output is another BDD.

int iszero(bdd func ) Returns integer 1 just if func  is the always-zero function. 
Input is a BDD, output is integer 1 or 0 (it’s not a BDD)

bdd cofactor(bdd func, var x , int val)
Computes cofactor of func with respect to var x, setting
x = val.  func is a BDD, var is a variable, 
val is integer  0 or 1

bdd AND(bdd  f,  bdd g)
bdd OR(bdd  f,  bdd g)
bdd EXOR(bdd  f,  bdd g)
bdd NOT(bdd  f)

Compute the basic logical (gate type) operations
on BDDs.  AND, OR and EXOR create new BDDs 
representing  the logical AND, OR and exclusive-or
of their inputs.   NOT creates the BDD for the complement
of its input.

bdd CONST1, CONST0
You can assume these two BDDs are already defined.
These are just the constant 1 function and the
constant 0 function.  Note that iszero(CONST0) == (int) 1.

No other operations are implemented, and there is no way for you to examine the BDD 
data structure directly.

Describe (in C-like pseudo-code notation–we don’t need real code here!) how you would 
implement the following operations:
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• int depends(bdd f, var x) Determine whether function f depends on the
specified variable x.  This means  if you change x,
at least sometime the output of f will also change.
f is a BDD, x is a variable, depends returns integer 0 or 1.

• bdd univquant(bdd f, var x)
Compute universal  quantification of function f with respect 
to  variable x.  f is a BDD, x is a variable, univquant
returns a BDD.

• int opposite(bdd f, bdd g) Determine whether two functions are complementary,
i.e., if one of them is the complement of the other.
f and g are BDDs,  opposite returns integer 0 or 1.

• bdd exchange(bdd f, var a, var b )
Exchange roles of specified variables in function f.  
For example, exchange(a•b + d, a, d ) ––> d•b + a.
f is a BDD, a and b  are variables, exchange returns a BDD.

• bdd compose(bdd f, bdd g, var x)
Creates a new function (composition function) with variable 
x in f set to the output of g.  The picture below clarifies
what we are computing.  f and g are BDDs, x is a 
variable, and compose returns a BDD.

HINTS:   lots of things that look difficult are easier when you cofactor them and look at 
the cofactors.  Play around with ITE of various combinations of the cofactors. The first 3 
operators are pretty straightforward, the last 2 are rather tricky.  None of these things 
requires some sophisticated recursive algorithm, just a few lines of calls to the right oper-
ators with the right inputs.  To emphasize this, here is the answer for the first part, for  
depends(bdd f, var x):

int depends(bdd f, var x) {
     return(1 - iszero(  EXOR( cofactor(f, x, 0), cofactor(f, x, 1) )   );

} 

a
b
c
d

f(a,b,c,d)

a
b
c
d

g(a,b,c,d)

a
b

d

compose(f,g,c)a
b
c
d

f

g

g f
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Notice how this works.  If function f( ) depends on variable x, then if I change x from x=0 
to x=1, there ought to be at least some pattern for the remaining inputs that makes the out-
put of the function change.  But this is exactly what the Boolean Difference tries to com-
pute.  So,  we compute the BDD for a new function  f( ... x=0 ...) ⊕ f( ... x=1 ...)  using 
calls to cofactor and to EXOR.  What does this new function tell us?  If the new function 
is zero always, for all inputs, then you cannot affect the output of function f by changing 
variable x.  In other words, f does not depend on variable x.  So if the iszero( ) function 
returns integer 1, it means the original f function does not depend on x.  To get the  true/
false return for depends() correct, we have to invert this, which is what the (1 - ...) does.  

6. Combinational Verification in KBDD  [30 pts]

kbdd is a BDD calculator done by Prof. Randy Bryant’s research group that has all the 
operators you’d want to use to manipulate Boolean functions, and a simple command line 
interface to type in functions, etc.  You will use this to try to verify the correctness of a 
logic gate network whose BDDs are much  too big to do by hand.  

kbdd lives in /afs/ece/class/ee760/bin/kbdd, and it works on IBM AIX boxes and on SUN 
Solaris boxes.

As a starting point, the following page shows  a complete trace of a session with kbdd, 
using it to do the network repair problem on the last homework assignment. Inputs are in 
normal font, outputs italics,  kbdd’s prompts for input shown in bold as KBDD:
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%  /afs/ece/class/ee760/bin/kbdd

KBDD: # input variables

KBDD: boolean a b cin d0 d1 d2 d3

KBDD: #

KBDD: # define the correct equation for the adder’s carry out

KBDD: eval cout a&b + (a+b)&cin

cout: a&b + (a+b)&cin 

KBDD: #

KBDD: # define the incorrect version of this equation (just for fun)

KBDD: eval wrong a&b + (!(a&b))&cin

wrong: a&b + (!(a&b))&cin 

KBDD: #

KBDD: # define the to-be-repaired version with the MUX

KBDD: eval repair a&b + (d0&!a&!b + d1&!a&b + d2&a&!b + d3&a&b)&cin

repair: a&b + (d0&!a&!b + d1&!a&b + d2&a&!b + d3&a&b)&cin 

KBDD: #

KBDD: # make the Z function that compares the right version of

KBDD: # the network and the version with the MUX replacing the

KBDD: # suspect gate  (this is EXNOR of cout and repair functions)

KBDD: eval Z repair&cout + !repair&!cout

Z: repair&cout + !repair&!cout 

KBDD: # universally quantify away the non-mux vars: a b cin

KBDD: quantify u ForallZ  Z a b cin

KBDD: #

KBDD: # let’s ask kbdd to show an equation for this quantified function

KBDD: sop ForallZ

  !d0 & d1 & d2

KBDD: #

KBDD: # what values of the d’s make this function == 1?

KBDD: satisfy ForallZ

Variables: d0 d1 d2

011

KBDD: #

KBDD: # that’s it!

KBDD: quit

%
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KBDD Quick Reference

boolean  var   … Declare variables and variable ordering
Extended naming
var[m .. n ] Numeric range (ascending or descending)
{s1,s2,…} Enumeration

evaluate dest  expr dest := bdd for boolean expression expr
Operations   (decreasing precedence)
! Complement
^ Exclusive-Or
& And
+ Or

bdd funct Print  BDD DAG as lisp-like representation
sop funct Print sum-of-products representation of funct
satisfy funct Print all satisfying variable assignments of funct
verify f1 f2 Verify that two functions f1 f2 are equivalent
size funct  … Compute total BDD nodes for set of functions
replace dest funct var replace Functional composition: dest := funct with

 variable var replaced by replace function output
quantify [u|e] dest funct var … dest := Quantification of  function funct over 

variables var ...
e Existential quantification is done
u Universal quantification is done

adder n Cout Sums As Bs Cin Compute functions for n -bit adder
n Word size
Cout Carry output
Sums Destinations for sum outputs: Sum.n … Sum.0
As A inputs: A.n-1 … A.2  A.1 A.0
Bs B inputs: B.n-1 … B.2  B.1  B.0
Cin Carry input

alu181 Cout Fs M Ss Cin As Bs Compute functions for ‘181 TTL  ALU
Cout Destination for carry output
Fs Destinations for function outputs: F.3 F.2 F.1 F.0 
M Mode input

 Ss Operation inputs: S.3  S.2  S.1  S.0
Cin Carry input function
As A inputs: A.3  A.2  A.1 A.0
Bs B inputs: B.3  B.2  B.1  B.0

mux n Out Sels Ins Compute functions for 2n-bit multiplexor
n Word size
Out Destination for output function
Sels Control inputs: Sel.n-1 …  Sel.1  Sel.0
Ins Data inputs: In.2n – 1 …  In.1  In.0

quit Exit KBDD
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So, what shall we use kbdd to verify?  It turns out that adders are a very good choice here, 
because they come in so many different styles, and we know that the BDD for a basic 
adder is very simple and small.  Let us look at a not-so-straightforward design for a 4-bit  
binary adder block. To start, here is a reminder of how an ordinary carry lookahead adder 
works

You could make an 8-bit lookahead adder here by connected 2 of these 4-bit blocks, and 
connecting the lower-block’s carry out to the carry in of the higher block.  

It turns out that there are many other ways of doing lookahead ideas. The adder on the next 
page is one of the more famous ones:  the Ling Adder.  

Question:  Does this thing really work?  (One does hope so, it’s a pretty famous adder design, 
from Ling of IBM in 1981.  But, we did copy these equations from the lit, who knows, maybe 
we got them wrong...?) To test this, create the equations for an 8-bit Ling adder.  This just 
means take 2 of the 4-bit blocks on the previous page, and connect them with the h4 signal rip-
pling between them. You can assume that h0 = Cin  for “carry in” variable. 

This means, we want you to build the BDDs for all 8 of the sum bits s7 , s6 , ... s0 for the Ling 
adder, and compare them  to an “ordinary” adder.  Are they identically the same Boolean func-
tions?  Ignore the carry out of the high bit -- the Ling adder doesn’t generate this explicitly so 
we will ignore it.

Use kbdd to formally verify this 8-bit design.  Include a listing of your session with kbdd show-
ing how you did this.  Note especially that kbdd has basic n-bit adders built in, so to create the 
“baseline” sum-bit equations is a simple operation. For example, to do a basic 4-bit adder, this 
will suffice:
kbdd:  boolean a[3..0] b[3..0] s[3..0] cout cin

kbdd:  adder 4 cout s[3..0] a[3..0] b[3..0] cin

Ordinary 4-bit
Lookahead Adder

ai-1 bi-1 ai-2 bi-2ai-2 bi-2 ai-3 bi-3ai-3 bi-3 ai-4 bi-4ai-4 bi-4

In a conventional carry lookahead adder, we would do this:

gi = ai bi          per bit carry generate signal
pi = ai ⊕ pi      per bit carry propagate signal

si = pi ⊕ gi output sum bit

Lookahead-style output carry:
ci = gi-1 + gi-2pi-1 + gi-3pi-2pi-1 + gi-4pi-3pi-2pi-1 + ci-4pi-4pi-3pi-2pi-1

ci-4  CarryinCarryout ci 

si-1          si-2 si-3 si-4  sum bits
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All the work is in creating the Ling adder in kbdd, and then comparing it appropriately.

Note: It’s probably easiest to edit a script file that you then run through kbdd using the 
source kbdd command.  In UNIX, if you type the following italics stuff:
% script

% /afs/ece/class/ee760/bin/kbdd

kbdd:  source  myfilename

kbdd: quit

<you hit control-D>

then it will (1) start saving everything in a file called typescript, (2) run kbdd, (3) tell kbdd 
to run your commands in your file myfilename.   You type control-D to stop the script sav-
ing.  You can then print this typescript file and hand it in, and include some comments so 
when we read it, we understand what you did.

4-bit
Ling Adder

ai-1 bi-1 ai-2 bi-2ai-2 bi-2 ai-3 bi-3ai-3 bi-3 ai-4 bi-4ai-4 bi-4

hi-4  inartificial hi out

si-1          si-2 si-3 si-4  sum bits

In a Ling Adder, instead of propagating the carry ci from stage
to stage, we propagate an “artificial” signal hi = ci + ci-1
The motivation is that it’s faster to compute hi
We do it like this:

gi = ai bi          per bit carry generate signal
ti = ai + pi       Ling-style propagate signal 

Ling-style lookahead output :
hi = gi-1 + gi-2 + gi-3ti-2 + gi-4ti-3ti-2 + hi-4ti-4ti-3ti-2

Intermediate “h” signals use the same pattern, but
just have fewer terms.  For example, since i=4 above, then:
h3 = g2 +  g1 + g0t1t2t3   +    h0t1t2t3

This “sort-of-a-carry” propagation is nicer – less levels of logic.
However, the sum calculation becomes more complicated:

si = ( ti ⊕ hi+1 ) + hi gi ti-i

generated carry
from 2 prev bits

propagate g0 in bit 0
thru bits 1 2 and 3 

propagate h0 “carry in”
thru bits 0 1 2 and 3 
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7. Multi-Terminal BDDs [10 pts]

BDDs come in a number of specialized variants, one of which is the Multi-Terminal BDD, 
or MTBDD.

MTBDDs are a generalization of BDDs that allow an arbitrary number of real-valued ter-
minals instead of just the basic binary terminals, 0 and 1. While a BDD represents func-
tion that returns a Boolean value for any assignment to its variables, an MTBDD returns a 
real number.  More formally:

BDDs          F : Bn -> B

MTBDDs    F : Bn -> R

Suppose you wanted to represent the following function:

 F(a,b)  = 1.2   for a=1, b=0 
  F(a,b) = 2.5    for a=0

F(a,b) = 4.7   for a=1, b=1

These numbers could have any number of meanings. One example would be the power in 
mW consumed by a particular circuit when it’s input changes from “a” to “b”. Or it could 
be the delay in ns, or the rise time of the output. The MTBDD for this function would be 
the following:

Furthermore, MTBDDs can be used to represent real-valued matrices fairly efficiently.   
To do so, we introduce log(# rows) + log(# columns) variables to encode the row position, 
and  column position. For a simple 2 by 2 matrix, we get the following:

2.5 4.7 1.2

a

b

F

1.5    2.5
2.5    1.2

1.2 2.5 1.5

col

row row
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For very large matrices with lots of repeated numbers, the MTBDD representation can be 
considerably smaller than a simple listing of the values, and operations like matrix-addi-
tion or matrix-multiplication are correspondingly faster.

It turns out that working with MTBDDs is just as easy as with BDDs.  To apply an arbi-
trary binary operator (function with two operands, like “a+b”), we can use the same 
expansion and cofactoring rules as with BDDs. The cofactor of a function F with respect 
to variable x, or Fx, is obtained by redrawing the MTBDD without all of the “x” nodes, 
and redirecting their incoming edges to the “hi” son. For example:

Using cofactors, we can decompose operations on MTBDDs in exactly the same manner 
as for BDDs:

F = x Fx + x’Fx’   

F+G = x ( Fx + Gx) + x’ (Fx’ + Gx’)

F*G = x ( Fx * Gx) + x’ (Fx’ * Gx’)

This results in a nice recursive algorithm for performing arbitrary operations on two input 
MTBDDs that looks remarkably similar to algorithms for BDDs.

Do this:

1.)   Draw the MTBDDs for the two following functions:

F(a,b) = 3   for a=0
0   for a=1,b=0
4   for a=1,b=1

G(a,b) = 0   for b=1
4   for b=0

2.)  Compute and draw the resulting MTBDDs for H=F+G and M=F*G

(Hint: This will be easier if you think about what the results should be for each of the 
assignments to a and b first, and then try drawing the MTBDD. )

0.4 1.1

a

 b
cofactor
w.r.t. “b”

0.4 1.1

a
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8. Metaproducts [20 pts]

A wonderful property of BDDs is that they only represent the “abstract” Boolean function, 
not the way you chose to implement it with logic gates.  This is why BDDs are so useful 
for verification:  you can implement x + x’ , or x + y + x’y’, or just plain “1”, and in all 
these cases, you get the identical BDD.

Of course, sometimes we actually want to represent the way we have implemented some-
thing as logic gates.  Suppose we really want to represent--for whatever odd reason--the 
SOP expression = x + x’.  Is there any way we can represent this directly, without immedi-
ately resolving it to the “1” function?  In other words, can we preserve the SOP product 
structure of this expression?  The answer is “yes” -- sort of.

We need a new representation of the function that “records” the SOP structure, but which 
also behaves as much like a BDD as possible.  It turns out there is a very elegant trick for 
recasting the original function in a new set of variables, and then just representing this new 
function as a BDD, that does much of what we want it to do.  This new “SOP preserving” 
structure is called metaproduct notation. (The idea is due to Olivier Coudert, originally 
of Bull Research Center in France.) Here’s the trick:

• For each variable x in your SOP form, the metaproduct formula has 2 different vari-
ables: rx and sx. rx is  the occurence variable for x;  sx is the sign variable for x.

• Suppose your function is f(x,y,z,w). For each product term in your SOP form, for 
example xy’z’, you get a corresponding metaproduct term. 
If your literal is in positive form, like x, you get  (rxsx ) in the metaproduct. 
If your literal is in negative form, like x’, you get  (rxsx’ ) in the metaproduct.   
If  a variable is missing from the product, like w, you get (rw’)  in the metaproduct.
(It turns out the sw  variable doesn’t matter in this case, since w is not present, sign 
doesn’t matter)

• So, xy’z’ would get transformed into ( rxsxrysy’rzsz’rw’ ) in  metaproduct form.

Read  rx =1  as meaning “the variable x occurs in the product.”   Read  rx =0  as meaning 
“the variable x does not occur in the product.” Similarly, read sx =0 as “the polarity of x is 
positive” and   sx =1 as “the polarity of x is negative”.  For example: 

So, for example, if we actually tried to represent f(x)=(x + x’) we would get ( rx sx  + rxsx’) 
for the metaproduct form. To manipulate this, we represent it as a BDD.  we get one more 
rule here:

rx sx  ry sy’  rzsz’  rw’ 

xy’z’ w is absent in
this product term
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• Interpret the paths from the BDD root to the “1” leaf as specifying the individual prod-
uct terms in the metaproduct form.  If a variable is omitted on a path, you need to 
include it in both polarities in the final metaproduct.

This sounds more complicated than it really is.  Let’s try it.  Do this:

• Draw the BDD for the metaproduct for the single-variable function f(x)=x+x’.  Show 
how walking the paths from root to “1” leaf generates the correct metaproduct for this 
SOP form.

• Using what you know about BDDs, complement this BDD for this metaproduct.  
Again, walk the paths from root to “1” and generate the new metaproduct for f’(x). 
Interpret the result -- does this makes sense?  Why?

• Draw the BDD for the metaproduct of the 4 variable function: 
                              f(x,y,z,w) = yw’ + xzw’ + xy’zw’
Again, show how the paths from root to leaf in this BDD generate the correct metap-
roduct.  (It’s OK to use kbdd for this one, as long as you can figure out the BDD struc-
ture yourself.)

• Again, complement this BDD, and show that the result makes sense as a metaproduct. 
(For this one, you might want to use kbdd -- if it’s too messy to do by hand.)


