HW2 Problem 8: Yet More On Metaproducts

- What you know
- Metaproducts are a way to represent SOP forms as BDDs
- Some BDD-like logic manipulations are "supposed to work..."
- ...but results are very difficult to interpret
- HW2 problem 8: a 4-variable function is too big to see what's going on.

TWhat you don't know

- That metaproducts really represent sets of things (like we introduced in Lec05 on Formal Verification)
- How to really interpret ops like NOT(BDD in metaproduct form)

More On Metaproducts

- Suppose I have a Boolean function of 2 vars: $F(x, y)$
- If I want to consider writing an SOP equation for $F(x, y)$, how many possible product terms could there be?
- Can enumerate: there are $3^{2}=9$ terms:
- Every product has 2 "slots" for literals in it
- The first slot can be one of $\{\varepsilon, x, x$ ' where " ε " means "empty"
- The second slot can be one of $\{\varepsilon, y, y$ ' $\}$ where " ε " also means "empty"
- Why 9 terms max? $\left|\left\{\varepsilon, x, x^{\prime}\right\}\right| x\left|\left\{\varepsilon, y, y^{\prime}\right\}\right|=3 \times 3=9$
\checkmark Examples
- Term $x y^{\prime}==\left(l^{\text {st }}\right.$ slot is $\left.x\right)\left(2^{\text {nd }}\right.$ slot is $\left.y^{\prime}\right)$
- Term $x^{\prime}==\left(\left.\right|^{\text {st }}\right.$ slot is $\left.x^{\prime}\right)\left(2^{\text {nd }}\right.$ slot is $\varepsilon--$ empty $)$

More on Metaproducts

W Well, what are all 9 of these possible product terms?

$\\|^{\text {st }}$ slot	$2^{\text {nd }}$ slot	Product Term Represented
ε	ε	$\varepsilon=$ empty
x	ε	x
x'	ε	x'
ε	y	y
ε	y'	y^{\prime}
x	y	xy
x	y^{\prime}	xy'
x'	y	x'y
x'	y^{\prime}	$x^{\prime} y^{\prime}$

- OK, what does this have to do with metaproducts...?

More on Metaproducts

V A metaproduct is really a BDD that represents a set

- The set it represents is some arbitrary set of product terms, chosen from the complete set of 9 (in this 2 -variable case) on previous slide
∇ Example: $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y}$,

Metaproduct BDD

| ${ }^{\text {st }}$ path to "I" node represents term " x "

$2^{\text {nd }}$ path to " I " node represents term " y ' "

More on Metaproducts

- So, what really happens when you complement this BDD?

It's the BDD for the set of all the OTHER product terms NOT in the original BDD...

More on Metaproducts

- So, what really happens when you complement this BDD?
- You get a new BDD that represents the 7 other products NOT in original set

2 product terms in original set

7 other product terms that were NOT in original set

More on Metaproducts

V Subtle stuff

- Interpreting what happens when you see missing variables

x is here and negative, but no y occurrence var. Interpret as: all values of y are possible, including the empty " ε " y value.
Result is: $x^{\prime}, x^{\prime} y, x^{\prime} y^{\prime}$
x is here and positive, y is here, but no y sign var. Interpret as: all "signed" values of y are possible, but not the empty " ε " y value. Result is: $\mathrm{xy}, \mathrm{xy}{ }^{\prime}$

More on Metaproducts

- So both original metaproduct BDD and its complement are just sets of stuff. They represent subsets of these 9 terms
- When you complement one of these, you don't get F'(). You get a set that represents all the other terms you didn't represent originally

Represents these 2 of 9 possible terms

Represents these
7 of 9 possible terms

Back to Homework

v About HW2 Problem 8

- The part about "..complement it and explain it" was aimed at this, but with $F()=4$ variables, its just way too complicated to see. (Sorry...)
- Do this instead of the complicated 4-variable function:
\triangleright Let $F(x, y)=x^{\prime} y+x y$ '
\triangleright Draw the BDD for the metaproduct form for $F()$
\triangleright Draw the complement BDD for this metaproduct BDD
\triangleright Like in these notes, show that the complement really does represent all of the other product terms not in the original BDD.

