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When building low power devices for handheld electronics, it is important to be able to model and measure the
power dissipation of a circuit. That’s the topic of this project. The goals of this project are to gain insight into the
modeling and design of lower power circuits through a simulation model.

Work alone or in groups of two. 

 

Power dissipation in CMOS circuits

 

The power dissipation in a CMOS circuit is the sum of a static and dynamic component. We will ignore the static
component and estimate the dynamic power dissipation in a CMOS logic gate by counting the number of times the
gate’s output transits from zero-to-one. i.e., the gate only dissipates power changing logic value from zero-to-one.
Although this isn’t quite true, it is a reasonable approximation.

So, to estimate the power dissipation, all we need to do is to have gate models that count their output zero-to-one
transitions, and drive the inputs with a bunch of test vectors. Not so fast! What if a gate’s inputs change several times
in zero time — a possibility when the various inputs may change or there are zero delay gates? In that situation, we
might count several zero-to-one changes when there only should be one. Or we might count several when should be
none! Clearly we need to be more clever.

 

Behavioral models for logic gates

 

Verilog gate primitives do not do transition counting. The approach we’ll take is to write behavioral models of
the gates we need. We’ll use the statements in an always block to deal with the counting.

The model should also include parameters to specify different inertial and transport delays. That is, instead of
assuming that they’re equal, as Verilog’s gate primitives do, we’ll allow them to be different (of course, inertial must
be less than or equal to transport). These will be determined by parameter specifications which can be overridden at
instantiation time.

 

What function are we to implement?

 

You’ll build two versions of a circuit to implement the following equation:

 

reg [15:0] a, b, c, d, e;
a = b + c + d + e;

 

Assume that each 16-bit add of two operands takes a combinational logic delay of time 

 

τ. 

 

We will load the results
into behaviorally-modeled registers — there will be no transition counting in them. Here are two versions of the cir-
cuit to consider.

 

•

 

The adds are organized

 

 

 

like a balanced tree and the operations occur in 2

 

τ 

 

time. That is, you will have a 
clock placed at 2

 

τ (

 

2

 

τ 

 

is its period) that will load the results of the adds. The balanced tree will imple-
ment a = (b + c) + (d + e).

 

•

 

The adds are again organized like a balanced tree, but the operations are pipelined with a clock of period 
1

 

τ. 

 

Thus, b + c and d + e will be loaded into a register after 1

 

τ.

 

 Then, the sum of these two registers will 
be loaded into register a after another 1

 

τ. 

 

Given that the two stages of adds are occurring at the same 
time, test vectors will be applied every 1

 

τ, 

 

the circuit will be pipelined, and a result will come out every 
1

 

τ, 

 

even though it still takes 2

 

τ τ

 

o produce the result. 

 

Steps 

 

Environment setup:
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We are going to use Synopsys Design Compiler to generate gate-level circuits this time. So copy the Synop-
sys setup file from /afs/ece/class/ee360/bin/.synopsys_dc.setup into your home directory.

In your working directory, create a sub-directory called “work” which is the design library directory used by
Design Compiler. 

Copy the directory of /afs/ece/class/ee360/bin/cell_library/verilog/ into your working directory. This direc-
tory has verilog behavioral description of all the basic gates, buffers, flip-flops, etc. that the Design Compiler
maps your design onto. Some of them might not be useful in this project. 

 

Build the circuits and simulate:

 

Implement a 1-bit full adder with behavioral level description. Instantiate your 1-bit adder to make a 16-bit
adder using the ripple-carry-adder technique. Build the two circuits above. and show that they correctly pro-
duce the same results. Set the clock rate the same for each circuit. The clock rate can be any value at this
step. 

 

Synthesize the circuits:

 

Synthesize the circuits using Synopsys Design Compiler using the default synthesis flags. Write the output
into a gate-level Verilog description.

 

Add delay and transition counting code:

 

This is the really fun part. Remember in the “verilog” directory, we have behavioral description of all the
gates. Now you can add delay and counting codes into those modules. You might not need to work on each
of those. Look at your synthesized gate-level design, and figure out which gate modules you actually need to
edit in order to simulate just your design. 

For example, in your gate-level Verilog file, there is an AND gate:

and2_2x_2x   z1( p1, p2, p3); 

Accordingly you need to look for the file named “and2.v” in the “verilog” directory. However, the module
name in that file is and2_1x_1x (here 1x means the driving capability, so and2_1x_1x has the same function-
ality as and2_2x_2x). You can just change the module name, or copy it to another new module named
and2_2x_2x. So at the end of this step, you will have a gate-level design, and all the basic gate modules
needed in your design with counting code added. 

Specify various delays (inertial and transport delay) for the basic gates in your library. For example, for a
third of gates have 3,5, (3 for inertial delay, and 5 for transport delay), a third have 2,3, and another third
have 1,2. Maybe make a few of the gates have zero propagation delay. (We’re doing this so that we get lots
of ripples in the outputs of the gates — which is typical of real logic.)

 

Simulate and measure the power dissipation:

 

Set the clock period to be a reasonable value according to your gate delay — just enough time for all the
logic changes to settle. Run a whole bunch of input vectors through the circuit and compare the power dissi-
pation and energy dissipation of the two circuits. Explain the differences. Use the $random function to pro-
duce thousands of inputs. 

 

Compare different synthesis flags:

 

In design compiler, set the compilation flag to be “minimize delay” or “minimize area”. Compare these two
designs with the one in Step 3 (area/delay/power/energy) and explain the differences. 

 

Suggest a different structure for the adder. 

 

Implement the two versions of the circuit as in Step 2. Synthesize them using the same synthesis flags as in
Step 3. Compare the power/energy dissipation. Are the results the same as what you expected? Explain why.
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Complications

 

You can count transitions in the whole circuit by having an integer in the top module that is initialized to zero at
the start of the simulation. Through hierarchical naming conventions, each module in the design can reference that
variable and increment it (or decrement it). Or you can call a function defined in the top module that updates it. Look
up functions and hierarchical naming in the book.

The messy part here is making sure that we only count one zero-to-one transition per actual zero-to-one transi-
tion. Realize that a behavioral model may execute several times during zero time and its output may change each
time. You don’t know if the current execution of the model is the last. So, you may have to check the time to see if
now is the first time you’ve run in a new time (meaning the last execution was the last time in previous time). Or, a
zero-to-one transition may be cancelled because the inertial delay isn’t met — don’t want to count that transition!

Helpful hints:

 

•

 

$time is a system function that returns the current version of time. It can be assigned to a variable of 
type “time.” $stime is similar except that it returns an integer.

 

•

 

There is an interesting feature of a non-blocking update that we didn’t cover. Let’s say that several non-
blocking updates are made to the same register and are scheduled for the same time. in the simulation 
cycle where the simulator retrieves these updates from the event list, they are executed in the order in 
which they are originally entered in the list. i.e., the last one out was the last assignment made and is the 
final value of the register. (Play around with it some and check that out.)

 

•

 

It’s probably best to stick with one simulator.

 

•

 

No “PLI” stuff.

 

Grading

 

Parts of your grade depend on:

 

•

 

A demo — to see your design simulating and to ask you questions about your implementation.

 

•

 

A write-up — describing and discussing the results of each of the “steps” above. Of specific interest is 
how you handled the “complications,” and what you did to make your design more power/energy-effi-
cient. i.e., explain your gate model.

The project is due in class on the due date. 10% per day late penalty.


