
Lectur 7-1

Combination Notch and Bandpass Filter 

• Clever filter design for graphic equalizer can perform both notch and 
bandpass functions

• Gain or attenuation is controlled by a potentiometer for specific frequency 
bands
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Lectur 7-2

Combination Notch and Bandpass Filter 
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Combination Notch and Bandpass Filter 
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Lectur 7-4

Combination Notch and Bandpass Filter 
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Lectur 7-5

Combination Notch and Bandpass Filter 
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Lectur 7-6

Integrator via Negative Impedance Converter 

• Presents a negative resistance at the input terminals

• Best analyzed by applying a test voltage and measuring the input current
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• If it is behaving like a linear circuit, we can calculate the Thevenin equivalent 

• If it’s passive, we can simply calculate its impedance (resistance in this case)
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Thevenin/Norton Equivalents

• By definition, a linear circuit has a straight-line i-v characteristic
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Lectur 7-8

Thevenin/Norton Equivalents
• If the line passes through the origin, then it is a passive linear circuit --- a 

single impedance

• Only one (vx,ix) point is needed to determine the slope

i

v

slope=1/R R=vx/ix

(vx, ix)

linear 
circuit

1

2

i
+

v
_

• A negative resistance is recognized by a negative slope (with directions shown)
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Lectur 7-9

Thevenin/Norton Equivalents 

• Note that the same Thevenin/Norton conversion steps --- applying test 
voltages and measuring test currents --- works for complex impedances too
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• We just can’t draw them as two dimensional i-v characteristics
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Negative Impedance Converter 

• Calculate vin/iin
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Lectur 7-11

Negative Impedance Converter 
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Lectur 7-12

Voltage-to-Current Converter 
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• The negative impedance converter can be used to create a voltage-to-current 
converter where the output load current is independent of the load impedance
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Lectur 7-13

Voltage-to-Current Converter 
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• We could also write out all of the current equations and get the same result

R

ZL
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Integrator 
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• Use the voltage-to-current converter to design an integrator
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Lectur 7-15

Integrator 
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• Need a low output impedance for this circuit -- why?

• If the output impedance is not low enough, what is another design option?
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Lectur 7-16

More Nonidealities

• Along with the frequency dependence of the gain, and the finite output/input 
impedances of the devices, there are other nonidealities associated with 
opamps that can cause distortion

• Saturation:  the output is really limited to a voltage that is 1 to 3 volts less 
than VCC

• Slew Rate:  limited gain of transconductance input amplifier can cause severe 
distortion in the output

• CMRR:  the signal component that is common to both differential inputs is 
amplified somewhat, and the CMRR specifies the quality with which this 
phenomenon is rejected

• dc Offset Voltage: the input differential voltage required to set the output to 
zero when no other signals are applied

• Finite Input/Output Impedances: the input resistance/impedance of the inputs 
and the limited current sourcing capability of the output

• dc Input Bias Current: small currents required to bias the transistors at the 
input stage of the opamp
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Slew Rate Limitations

• We know that an opamp behaves like a low pass filter due to the frequency 
dependence of the gain

• A unity gain amplifier has a bandwidth of ωt
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Slew Rate Limitations

Vi

• So we can write an expression for the closed-loop gain as:
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• In the time domain we’d expect a step response of the form:
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Slew Rate Limitations

• If the output wants to change faster than this, it will not be able to do so

• This is especially difficult for large signals;  e.g. when V is large

• The maximum switching speed is limited by ωt, which is due to the 
compensation capacitor in this case, but all capacitors in the circuit in general

• The open loop roll-off with frequency is due to the limited current sourcing 
capability of the amplifier and these capacitors
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• So the maximum current sourcing capability and the compensation capacitor, 
for example, may determine the slew rate

SR
dVo
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= (volts/µs)

• A smaller change in voltage can go to higher frequencies before encountering 
the SR limitation
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Opamp Macromodels

• We can look at this limited current sourcing capability of the opamp in terms 
of the opamp macromodel 
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• When change in vid is sudden, Gm can only supply a limited amount of 
current, Imax for a real input transconductance amplifier 
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Slew Rate Limited Response

• At the slew rate limit the output can only ramp up with a slope of Imax/C(1+µ) 
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741 Example

+ SIN
VIN

+ -

-15V
VC8

+ 15V
VC9

741

+

-

• Slew Rate for a 741 is 0.63V/µs

• For a sinusoidal signal, the maximum change occurs near the zero crossing, 
so this is where we will notice the first signs of slewing

dVo
dt

---------
max

ωV=

• What’s the maximum allowable 
frequency for a peak sinusoidal input 
voltage of 5.0 volts?
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741 Example

time
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• Input and output voltage for a 5 volt peak, 10kHz frequency
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741 Example

time
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• Input and output voltage for a 5 volt peak, 20kHz frequency
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741 Example

time
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• Input and output voltage for a 5 volt peak, 40kHz frequency
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741 Example
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• Note that the frequency response of the opamp does not affect the input signal 
at 20kHz

• It is a slew rate limitation that depends on the magnitude of the input voltage 
(has Imax of the input transconductance amplifier been reached?)


