MOS IC Amplifiers

- MOSFETs are inferior to BJTs for analog design in terms of quality per silicon area
- But MOS is the technology of choice for digital applications
- Therefore, most analog portions of mixed-signal designs are MOS
- Most MOS amplifiers will be IC amplifiers with "active" loads
- Resistors and decoupling capacitors are too expensive on ICs

Token Ring LAN JSSC 12/89

NMOS Amplifier --- Active Load

- Natural extension of amplifier with resistor pull-up
- Size M2 and bias M1 so that M1 is in saturation
- This is a digital NMOS logic gate when large input signals are applied

Load Line View

- "Load line" is nonlinear

NMOS Amplifier Example

- For a larger dc input bias voltage M1 is no longer in saturation

Small Signal Model

- M2 behaves like a resistor in the small signal model
- Why?

Small Signal Model

NMOS Amplifier Example

- We would tend to lower the "resistance" of the pull-up transistor (increase K2), or decrease the current levels of the amplifier transistor (decrease K1) to keep M1 in saturation
- But these changes tend to lower the gain

NMOS Amplifier Example

- Design objective is to make K1 as large as possible, and K2 as small as possible, to get a reasonable gain

- $-\mathrm{DB}(\mathrm{VO})$
- Why the deviation from ideal gain?

Body Effect

- For discrete FETs there is no body effect since the source is tied to the body
- For ICs, all of the NFET body nodes are tied to the lowest potential in the ckt
- The source of our load transistor is not at the same potential as the substrate
- Source voltage partially modulates the channel --- back gate effect

- For large signal behavior this is captured by the change in V_{t} based on the parameter, gamma

$$
V_{t}=V_{t 0}+\gamma\left(\sqrt{2 \phi_{f}+V_{S B}}-\sqrt{2 \phi_{f}}\right)
$$

Body Effect

- The impact on the small signal model is a function of same parameters
- The change in v_{o} (which is the source voltage) modulates the back gate

Common Source CMOS Amplifier --- Active Load

- Body effect is not as significant a problem for CMOS
- Current sources are used as pull-ups instead of resistors or load-transistors
- Having complementary types of transistors simplifies the implementation
- Is the body effect a factor for this amplifier?

Common Source Small Signal Model

- Load line is now nearly a constant current --- huge gain
- What does the small signal model look like?

Common Source Small Signal Model

CMOS High Gain Region

- Input-output relation is very similar to a CMOS inverter
$\mathrm{V}_{\mathrm{t}}=1 \mathrm{v} \quad \mathrm{K}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ lamda $=0.01$

CMOS High Gain Region

- What is the allowable range for v_{o} and v_{i} ?

ac Response

- Using an ac input with a 3 volt offset:

$$
\mathrm{V}_{\mathrm{t}}=1 \mathrm{v} \quad \mathrm{~K}=100 \mu \mathrm{~A} / \mathrm{V}^{2} \quad \text { lamda }=0.01
$$

Common Drain (Source Follower) Amplifier

- Source Followers are used for output stages
- Gain less than unity, but provides low output resistance to drive loads

Common Drain (Source Follower) Amplifier

Common Drain (Source Follower) Amplifier

Source Follower

- For an emitter follower, the gain is the voltage division of input resistance and emitter resistance
- But the source follower is somewhat different from an impedance reflection standpoint

- Small signal impedance looking into the gate appears as an infinite resistor, while that from the perspective of the source is finite

Small Signal Model

- Assuming that R_{L} is infinite?

