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FETs:  Field Effect Transistors

• MOSFETs:  Metal-Oxide Semiconductor Field Effect Transistors

• gates are really polysilicon, not metal

• extremely large input resistance

• four terminal devices

• occupy less area than BJTs --- predominant technology for digital

• but do not provide the same gain as BJTs for analog

• Used for analog mainly due to the need mixed-signal designs

• JFETs:  Junction Field Effect Transistors

• not as popular as MOSFETs, but behave very similarly
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Enhancement Mode MOSFETs
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• Cross-section view

• The basic structure of an enhancement mode mosfet
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Made of polysilicon or rarely metal.

The oxide is very thin: e.g. 40 - 15 nm.
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Enhancement Mode MOSFETs
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Enhancement Mode MOSFETs

• We keep the source and drain p-n junctions off at all times

• They contribute small leakage currents, and some nonlinear capacitance

• The gate input has practically infinite resistance, and behaves like a capacitor
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Enhancement Mode MOSFETs
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• Depletion regions around the p-n junctions due to the built-in voltages

• With all of the voltages set to zero, the S-B-D connections form an NPN 
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• Even with a postive drain voltage, there is no significant current flow
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Enhancement Mode MOSFETs

• The gate is used to establish a connection between the source and drain nodes

• Postive gate voltage (for this NMOS enhancement transistor):

• sets up an electric field from gate to bulk which tends to repel positive 
charges in the p-type bulk and create a depletion region

• negative charge from the source and drain regions is attracted toward the 
channel by the same electric field

vGS+ -
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Enhancement Mode MOSFETs

• Gate to bulk acts like a capacitor
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Inversion
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• When the VGS grows high enough, there is not enough holes at the surface to 
allow for electron recombination. QB becomes a negative fixed charge with 
density equal to NAof the bulk.

• Additional gate voltage causes the free electrons to be drawn to the surface of 
the channel --- forming an inversion layer. When concentration of electrons at 
surface equals NA we talk about strong inversion. Additional negative charge 
now comes from electrons in the channel.

+ + + ++
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Threshold Voltage

+ - + -

• The gate voltage required to create strong inversion

• If there is a small potential difference between the drain and source, then a 
current will flow across the inversison layer which acts like a resistor
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Flatband Voltage -- V FB

• There is a depletion region (negative Q) under the channel even with VGS = 0

• Due to dangling bonds at the material interfaces and unwanted positive 
charges at the surfaces and in the oxides

• The flatband voltage (generally negative) is the gate voltage required to 
exactly cancel this charge
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Threshold Voltage
• The threshold voltage is the flatband voltage plus whatever voltage is 

required to cause inversion in the channel
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Threshold Voltage

• Once -QB = NA, then further increases in gate voltage brings about the 
inversion layer

• The depletion charge and voltage becomes fixed at a value called  
respecitively: QB0 and 2φf

• Increases in channel charge correspond to the inversion layer charge, QI 
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Threshold Voltage

• Assuming VB and VS  are both zero, the threshold voltage is:
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Strong Inversion

• With a small positive drain voltage, the inversion layer charge will drift from 
source to drain
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• The conductance of the layer is proportional to VGS - Vt 

VDS > 0



Lecture 19-15

Inversion Layer Conductance

• Triode or linear region of operation

• Example:  W=L=1 micron
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Pinch-Off Region --- Saturation

• The conductance is not always proportional to VGS-Vt for all VDS

• As VDS increases, the bulk charge closer to the drain increases, and the 
inversion layer charge there decreases

• Conductance varies with position along the channel
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Pinch-Off Region --- Saturation
• As VDS increases further for a fixed VGS, the inversion layer eventually goes 

to zero at the drain edge of the channel --- pinch-off
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• Current is considered to saturate at this point since further increases in VDS 
do not increase the current significantly

VDS
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VGS Vt–≅ why? 
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Saturation Region

• Region of interest for analog design

• W=1 micron and L=10 microns
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Here, staturation means “current saturation” which is different than 
“voltage saturation” in bipolar transistors
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Equations

• Triode region equations for enhancement mode N-MOSFET

iD K 2 vGS Vt–( )vDS vDS
2

–[ ]=

vGS Vt≥ vDS vGS Vt–≤

K
1
2
---µnCox

W
L
-----=

A

V
2

-------

• For very small vDS, as on page 15, what is rDS?

In SPICE:  Kn µnCox=
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Equations

• Saturation region equations for enhancement mode N-MOSFET

iD K 2 vGS Vt–( )vDS vDS
2

–[ ]=

vGS Vt≥ vDS vGS Vt–≥

vDS
sat

vGS Vt–=

• Current varies quadratically with vGS 
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Saturation

• For vDS vGS Vt–≥
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• Large signal model in saturation
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W=1 micron
L=10 microns
V t0= 1 volt
K n=2e-5 (A/v 2)
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Saturation --- Channel Length Modulation

• VDS at the edge of the inversion layer remains fixed at VGS-Vt

• But the effective length of the channel decreases with increasing VDS

• Especially a factor when channel length is short
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Saturation --- Channel Length Modulation

• Sometimes expressed in terms of channel length modulation parameter
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• SPICE can calculate the modulation for you...
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Saturation --- Channel Length Modulation

• Or we can specify lambda explicitly in the model
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Output Resistance

• We can add a resistor to model the channel length modulation effect for the 
large-signal model in saturation

id

S

G D

K vGS Vt–( )2
+

_

• What is the value of ro?

ro

ro vDS∂
∂iDS

 
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W
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-----------------≈= =


